Turning inserts the selection approach based on fuzzy comprehensive evaluation

Author(s):  
Yunliang Huo ◽  
Ji Xiong ◽  
Yu Ze ◽  
Sitao Chen ◽  
Zhixing Guo

Tool selection is a multi-criteria decision-making problem in the presence of various selection criteria and a set of alternatives, but previous works are limited to evaluating the tools within the workshop tool library. To intelligently select proper inserts across suppliers under the Internet environment, an insert data format based on ISO 513 was established, and a framework was then designed to obtain a set of alternatives from different suppliers based on fuzzy intervals. Then, knowledge was described with convenient language and the simple membership function to build an intelligent system, which would infer the matching degree of insert characteristics to the machining conditions. Furthermore, analytic hierarchy process was applied to sort the alternatives. Finally, the case study shows that compared with previous works and machinists, this work not only obtains a set of alternatives from all suppliers who uploaded their product data with the designed format but comprehensively evaluates the insert (take finishing low-carbon steel as an example, both cemented carbide and cermet are recommended, the nose radius reduces 25%, the environmental index increases 25%, while the rake reduces 11.25%, when compared with machinists who tend to select the larger rake angle foe finishing). A platform was also developed based on Visual Studio 2015 and SQL Server 2012 to improve selection efficiency for inexperienced CNC operators, purchasers, and vendors.

2014 ◽  
Vol 670-671 ◽  
pp. 1421-1425 ◽  
Author(s):  
Jian Ping Tian ◽  
Hai Li Yang ◽  
Xiao Qiang Feng ◽  
Mao Tao Deng ◽  
Pei Tang

For multivariate and fuzziness of machine tool selection in CAPP system, fuzzy comprehensive evaluation has been proposed based on analytic hierarchy process. Fuzzy evaluating model system has been built. Through the synthetic analysis of the factors which influence on machine tool selection, fuzzy relation between the effecting factors is set up. Multivariate quantitative problems were solved well, and the uniqueness of machine tool selection is ensured. This method solved the problem of machine tool selection better and ensured the reliability & availability by running on the prototype system.


2019 ◽  
Vol 98 ◽  
pp. 01034 ◽  
Author(s):  
Mingjun Liu ◽  
Changlai Xiao ◽  
Xiujuan Liang

In this study, a hydrochemical investigation was conducted in Shuangliao city to identify the hydrochemical characteristics and the quality of groundwater using descriptive statistics and correlation matrices. And on that basis, combined with Analytic hierarchy process (AHP), an improved two-level fuzzy comprehensive evaluation method is used to evaluate the groundwater quality. The results indicate that the major cations and anions in groundwater are Ca2+ and HCO3-, respectively. The chemical types are mainly HCO3—Ca type water, some areas are complicated due to the influence of human activities. The evaluation results show that the water quality in the area is mostly III type water, and the groundwater quality in some areas is IV or V water due to the influence of primary geological conditions or human activities. The groundwater quality in the East Liaohe River Valley and Shuangliao urban area is relatively poor, and in the northwest part which is the saline alkali soil area is also relatively poor.


2013 ◽  
Vol 291-294 ◽  
pp. 1562-1567
Author(s):  
Ji Min Hu ◽  
Jian Long Gu ◽  
Chang Cui Hu ◽  
Hai Feng Wang

According to indicators’ information repetition and subjectivity of the indicators’ weight set during the variable fuzzy comprehensive evaluation, Principal Component analysis can help solve the weight of the relative indicators and reduce comprehensive evaluation dimensions of the variable fussy comprehensive evaluation. This paper has made a comprehensive evaluation of the status quo of Yunnan’s low carbon economy development(2005-2009), which turns out to be more practical compared with the mere variable fussy theory analysis, thus, principal component-variable fuzzy evaluation is a kind of feasible way to analyze the regional low carbon development status.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Xin Liu ◽  
Chengwei Ni ◽  
Liye Zhang ◽  
Ke Sheng ◽  
Baoning Hong

The durability of lightweight cellular concrete (LCC) and the corresponding assessment method are studied in this paper to improve the utilization of LCC in subgrade construction engineering. The durability assessment method is established by combining the analytic hierarchy process (AHP) with fuzzy comprehensive evaluation (FCE). The main assessment processes are as follows. Firstly, based on the physical and mechanical properties of LCC, the influencing factors are selected in terms of preliminary design, construction technology, and operation and management after completion of construction. The grading standard of influencing factors is established as well. Secondly, a multilevel assessment model with targets level, criteria level, and indexes level is established. AHP determines the effective weight of the lower level relative to the upper level. The consistency check of the judgment matrix is conducted to prove the rationality of the distribution of influencing factors’ effect weight. Thirdly, the membership function which is suitable for each influencing factor is built to calculate the membership degree. Besides, the practicality and reliability of AHP combined with FCE are demonstrated through a practical engineering case, which is the third section of a highway in Guangdong Province, China.


2013 ◽  
Vol 438-439 ◽  
pp. 1024-1027
Author(s):  
Xiao Guo Chen

The paper introduces some information about Harbin Metro line 1, makes the decision analysis on economies, environment, society and geological environment of Harbin Metro line 1 by some fuzzy comprehensive evaluation model, and gives the weight coefficients of indicators through analytic hierarchy process. The comprehensive evaluation result provides the basis for decision-makers during decision of metro projects.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Luqiang Ma ◽  
Youlin Xu ◽  
Jiaqiang Zheng ◽  
Xiang Dai

Multifunctional intelligent boom sprayer is a development direction of boom sprayers, and it could satisfy needs of precision and variable spraying and achieve aims of sustainable development of pesticide spraying, ecological protection, and efficient plant protection by reconfiguring its structures. Therefore, the evaluation of multifunctional intelligent boom sprayer reconfigurability has a role in improving product reconfigurability while reducing product function redundancy and production costs and reducing product function redundancy and production cost. In order to comprehensively evaluate the reconfigurability of a multifunctional intelligent boom sprayer, this paper established an evaluation index system and realized the evaluation process by using fuzzy comprehensive evaluation, analytic hierarchy process, and validity test. The evaluation result would avail to directly and effectively guide product optimization and upgrade process in accordance with quantitatively analyzed evaluation indexes of intelligent boom sprayer reconfigurability by using mathematical methods such as analytic hierarchy process and validity test in evaluation process. The index system was formed from six components, which were key design information, quality, cost, efficiency, intelligence, and operational capability. Index weights were calculated by the analytic hierarchy process. Finally, a multifunctional shiftable boom intelligent sprayer was evaluated for product reconfigurability improvements by using the evaluation method. Reconfigurability evaluation result of the multifunctional shiftable boom intelligent sprayer belonged to "good" evaluation interval by the calculation of formulas. There was further room to improve product reconfigurability, as the membership degree in the “good” evaluation interval was below 0.5. The study could provide a scientific basis for improving the reconfigurability, technical performance, and operation quality of products in intelligent boom sprayer design. In addition, it may be possible to decrease the arbitrary nature of subjective design factors and support economic and ecological goals when businesses upgrade products.


Sign in / Sign up

Export Citation Format

Share Document