Robust adaptive anti-slip regulation controller for a distributed-drive electric vehicle considering the driver’s intended driving torque

Author(s):  
Zhuoping Yu ◽  
Renxie Zhang ◽  
Xiong Lu ◽  
Chi Jin ◽  
Kai Sun

A robust adaptive anti-slip regulation controller which consists of two components, namely a road friction coefficient estimator and a wheel dynamics controller, is designed for distributed-drive electric vehicles. The road friction coefficient estimator is based on the latest non-affine parameter estimation theory to achieve the peak road friction coefficient. Also, working conditions for the road friction coefficient estimator are proposed to avoid the estimation error caused by a small slip ratio. According to the results of the road friction coefficient estimator, the desired reference slip ratio is obtained and the key parameters of the robust adaptive anti-slip regulation controller are modified to make sure that the road conditions can be made full use of. Then, according to the desired reference slip ratio, a state feedback control law with a conditional integrator is designed on the basis of the Lyapunov stability theory for a wheel dynamics controller by analysis of the non-linear characteristics of the tyres and the driver’s intended driving torque and constraints from the ground–tyre adhesion. In addition, it achieves smooth switching between optimal driving and the driver’s intended driving torque rather than normal switching logic. Multi-condition simulations and experiments show that the controller is adaptive to different road conditions, can improve the driving efficiency of the vehicle and can ensure stability of the vehicle. Finally, with comparative experiments, the distributed-drive electric vehicle with a robust adaptive anti-slip regulation controller proves to be more efficient than the traditional vehicle with a traditional anti-slip regulation controller.

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Gaojian Cui ◽  
Jinglei Dou ◽  
Shaosong Li ◽  
Xilu Zhao ◽  
Xiaohui Lu ◽  
...  

The real-time change of tire-road friction coefficient is one of the important factors that influence vehicle safety performance. Besides, the vehicle wheels’ locking up has become an important issue. In order to solve these problems, this paper comes up with a novel slip control of electric vehicle (EV) based on tire-road friction coefficient estimation. First and foremost, a novel method is proposed to estimate the tire-road friction coefficient, and then the reference slip ratio is determined based on the estimation results. Finally, with the reference slip ratio, a slip control based on model predictive control (MPC) is designed to prevent the vehicle wheels from locking up. In this regard, the proposed controller guarantees the optimal braking torque on each wheel by individually controlling the slip ratio of each tire within the stable zone. Theoretical analyses and simulation show that the proposed controller is effective for better braking performance.


2021 ◽  
Vol 15 ◽  
Author(s):  
Gengxin Qi ◽  
Xiaobin Fan ◽  
Hao Li

Background: The development of the tire/road friction coefficient measurement and estimation system has far-reaching significance for the active electronic control safety system of automobiles and is one of the core technologies for autonomous driving in the future. Objective: Estimating the road friction coefficient accurately and in real-time has become the leading research direction. Researchers have used different tools and proposed different algorithms and patents. These methods are widely used to estimate the road friction coefficient or other related parameters. This paper gives a comprehensive description of the research status in the field of road friction coefficient estimation. Method: According to the current research status of Chinese and foreign scholars in the field of road friction coefficient recognition, the recognition methods are mainly divided into two categories: Cause-based and Effect-based. Results: This literature review will discuss the existing two types of identification methods (Cause-based and Effect-based), and the applicable characteristics of each algorithm are analyzed. Conclusion: The two recognition methods are analyzed synthetically, and the development direction of road friction coefficient recognition technology is discussed.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Chi Jin ◽  
Anson Maitland ◽  
John McPhee

Abstract In this paper, we address nonlinear moving horizon estimation (NMHE) of vehicle lateral speed, as well as the road friction coefficient, using measured signals from sensors common to modern series-production automobiles. Due to nonlinear vehicle dynamics, a standard nonlinear moving horizon formulation leads to non-convex optimization problems, and numerical optimization algorithms can be trapped in undesirable local minima, leading to incorrect solutions. To address the challenge of non-convex cost functions, we propose an estimator with a two-level hierarchy. At the high level, a grid search combined with numerical optimization aims to find reference estimates that are sufficiently close to the global optimum. The reference estimates are refined at the low level leading to high-precision solutions. Our algorithm ensures that the estimates converge to the true values for the nominal model without the need for accurate initialization. Our design is tested in simulation with both the nominal model as well as a high-fidelity model of Autonomoose, the self-driving car of the University of Waterloo.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Lei Zuo ◽  
Duo Meng ◽  
Jinqi Zhang

This paper investigates the vehicle platoon control problems, in which the road-friction coefficient is taken into consideration. In order to improve the vehicle platoon safety in various road-friction conditions, an optimal spacing policy is proposed for the vehicle platoon. In detail, an intervehicle space optimization framework is developed by using a safety cost function and the gradient decent method. In this way, the optimal intervehicle spacing headway is presented such that the vehicle can be safely driven to the desired platoon under various road-friction conditions. Then, based on the proposed optimal spacing policy, we transform this optimal spacing vehicle platoon control problem into a moving target tracking problem. An adaptive distributed integrated sliding mode (DISM)-based vehicle platoon control scheme is proposed such that the vehicles can effectively follow the presented optimal spacing platoon. Moreover, the stability of the proposed vehicle platoon system is strictly analyzed and numerical simulations are provided to verify the proposed approaches.


Author(s):  
Tetsunori Haraguchi ◽  
Ichiro Kageyama ◽  
Yukiyo Kuriyagawa ◽  
Tetsuya Kaneko ◽  
Motohiro Asai ◽  
...  

This research deals with the possibility for construction of the database on the braking friction coefficient for actual roads from the viewpoint of traffic safety especially for automated driving such as level 4 or higher. In an automated driving such levels, the controller needs to control the vehicle, but the road surface condition, especially the road friction coefficient on wet roads, snowy or icy roads, changes greatly, and in some cases, changes by almost one order. Therefore, it is necessary for the controller to constantly collect environment information such as the road friction coefficients and prepare for emergencies such as obstacle avoidance. However, at present, the measurement of the road friction coefficients is not systemically performed, and a method for accurately measuring has not been established. In order to improve this situation, this study examines a method for continuously measurement for the road friction characteristics such as μ-s characteristics.


Author(s):  
Gurkan Erdogan ◽  
Lee Alexander ◽  
Rajesh Rajamani

This paper introduces a wireless piezoelectric tire sensor whose readings can be utilized for the estimation of various tire variables such as slip angle, slip ratio, tire forces and tire road friction coefficient. In this paper, the proposed sensor is demonstrated for the estimation of tire slip angle. Lateral deformation of the tire is decoupled from radial and longitudinal tire deformations using a special sensor design. The decoupled lateral deflection profile of the tire is employed to estimate the slip angle. A new tire test rig is constructed to experimentally evaluate the performance of the developed sensor. Results show that the tire sensor can accurately estimate slip angles up to values of 5.0 degrees.


Author(s):  
L Li ◽  
J Song ◽  
H-Z Li ◽  
D-S Shan ◽  
L Kong ◽  
...  

The contact friction characteristic between a tyre and the road is a key factor that dominates the dynamics performance of a vehicle under critical conditions. Vehicle dynamics control systems, such as anti-lock braking systems, traction control systems, and electronic stability control systems (e.g. Elektronisches Stabilitäts Programm (ESP)), need an accurate road friction coefficient to adjust the control mode. No time delay in the estimation of road friction should be allowed, thereby avoiding the disappearance of the optimal control point. A comprehensive method to predict the road friction is suggested on the basis of the sensor fusion method, which is suitable for variations in the vehicle dynamics characteristics and the control modes. The multi-sensor signal fusion method is used to predict the road friction coefficient for a steering manoeuvre without braking; if active braking is involved, simplified models of the braking pressure and tyre force are adopted to predict the road friction coefficient and, when high-intensity braking is being considered, the neural network based on the optimal distribution method of the decay power is applied to predict the road friction coefficient. The method is validated through a ground test under complicated manoeuvre conditions. It was verified that the comprehensive method predicts the road friction coefficient promptly and accurately.


Sign in / Sign up

Export Citation Format

Share Document