Braking performance of a novel frictional-magnetic compound disc brake for automobiles

Author(s):  
Yan Yin ◽  
Jiusheng Bao ◽  
Jinge Liu ◽  
Chaoxun Guo ◽  
Tonggang Liu ◽  
...  

Disc brakes have been applied in various automobiles widely and their braking performance has vitally important effects on the safe operation of automobiles. Although numerous researches have been conducted to find out the influential law and mechanism of working condition parameters like braking pressure, initial braking speed, and interface temperature on braking performance of disc brakes, the influence of magnetic field is seldom taken into consideration. In this paper, based on the novel automotive frictional-magnetic compound disc brake, the influential law of magnetic field on braking performance was investigated deeply. First, braking simulation tests of disc brakes were carried out, and then dynamic variation laws and mechanisms of braking torque and interface temperature were discussed. Furthermore, some parameters including average braking torque, trend coefficient and fluctuation coefficient of braking torque, average temperature, maximum temperature rise, and the time corresponding to the maximum temperature rise were extracted to characterize the braking performance of disc brakes. Finally, the influential law and mechanism of excitation voltage on braking performance were analyzed through braking simulation tests and surface topography analysis of friction material. It is concluded that the performance of frictional-magnetic compound disc brake is prior to common brake. Magnetic field is greatly beneficial for improving the braking performance of frictional-magnetic compound disc brake.

Author(s):  
Thierry A Blanchet

As in various manufacturing processes, in sliding tests with scanning motions to extend the sliding distance over fresh countersurface, temperature rise during any pass is bolstered by heating during prior passes over neighboring tracks, providing a “heat accumulation effect” with persisting temperature rises contributing to an overall temperature rise of the current pass. Conduction modeling is developed for surface temperature rise as a function of numerous inputs: power and size of heat source; speed and stroke length, and track increment of scanning motion; and countersurface thermal properties. Analysis focused on mid-stroke location for passes of a square uniform heat flux sufficiently far into the rectangular patch being scanned from the first pass at its edge that steady heat accumulation effect response is adopted, focusing on maximum temperature rise experienced across the pass' track. The model is non-dimensionalized to broaden the applicability of the output of its runs. Focusing on practical “high” scanning speeds, represented non-dimensionally by Peclet number (in excess of 40), applicability is further broadened by multiplying non-dimensional maximum temperature rise by the square root of Peclet number as model output. Additionally, investigating model runs at various non-dimensional speed (Peclet number) and reciprocation period values, it appears these do not act as independent inputs, but instead with their product (non-dimensional stroke length) as a single independent input. Modified maximum temperature rise output appears to be a function of only two inputs, increasing with decreasing non-dimensional values of stroke length and scanning increment, with outputs of models runs summarized compactly in a simple chart.


2021 ◽  
Vol 105 ◽  
pp. 184-193
Author(s):  
Ilya Aleksandrovich Frolov ◽  
Andrei Aleksandrovich Vorotnikov ◽  
Semyon Viktorovich Bushuev ◽  
Elena Alekseevna Melnichenko ◽  
Yuri Viktorovich Poduraev

Magnetorheological braking devices function due to the organization of domain structures between liquid and solid magnetic materials under the action of an electromagnetic or magnetic field. The disc is most widely used as a rotating braking element that made of a solid magnetic material due to the large area of contact with a magnetorheological fluid. Many factors affect the braking characteristics of the magnetorheological disc brake. Specifically, the value of the magnetic field and how the field is distributed across the work element is significantly affected at the braking torque. There are different ways to generate a magnetic field. In this study, the method of installation of permanent magnets into the construction, allowing to increase the braking torque of the magnetorheological disc brake is proposed. Simulation modelling showing the distribution of the magnetic field across the disk depending on the installation of permanent magnets with different pole orientations were carried out. The model takes into account the possibility of increasing the gap between solid magnetic materials of the structure, inside them which the magnetorheological fluid is placed. Comparative estimation of the distribution of the magnetic fields depending on the chosen method of installation of permanent magnets with different orientations of their poles is carried out. Further research is planned to focus on a comparative assessment of the distribution of magnetic fields depending on the selected material of the braking chamber.


2020 ◽  
Vol 44 (8) ◽  
pp. 1108-1117
Author(s):  
Linjie Li ◽  
Zihe Gao ◽  
Yilin Li ◽  
Pai Xu ◽  
Ningyu Zhao ◽  
...  

2003 ◽  
Vol 125 (2) ◽  
pp. 177-181 ◽  
Author(s):  
Carsie A. Hall, ◽  
Edwin P. Russo ◽  
Calvin Mackie

A model to predict the temperature rise in the reacted zone of discharging electrochemical devices has been developed. The model assumes that electrode kinetics are fast and concentration gradients are negligible. In the reacted zone, a thermal boundary layer grows, and its thickness is proportional to the reacted zone thickness. In the model, the temperature rise is predicted using the one-dimensional heat diffusion equation for a porous medium. The effective heat capacity per unit volume and effective thermal conductivity are defined as a function of electrode porosity. The instantaneous power per unit area dissipated in the reacted zone is used as a source term in the heat diffusion equation. With fixed parameters such as discharge current density, charge capacity per unit volume, electrode electrical conductivity, electrode porosity, and thermophysical properties of the pore-space fluid and electrode, the transient temperature distribution in the reacted zone is derived in closed-form. Subsequently, the maximum electrode temperature is readily obtained, and the maximum electrode temperature at complete discharge is derived. A new dimensionless parameter, the electro-thermal number, emerges as one of the most important parameters controlling the discharge time and maximum temperature rise.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 822 ◽  
Author(s):  
Aleksander A. Yevtushenko ◽  
Piotr Grzes

A spatial computational model of a motor vehicle disc brake, based on the system of equations of heat dynamics of friction and wear (HDFW), was developed. The interrelations of temperature-dependent coefficient of friction and coefficient of intensity of wear through the contact temperature and vehicle velocity were taken into account. The solution of the system of equations of HDFW was obtained by the finite element method (FEM) for six different brake pad materials associated with the cast-iron disc during a single braking. Changes in the braking time, coefficient of friction, braking torque, vehicle velocity, mean temperature of the contact area of the pads with the disc and wear of the friction surfaces were determined. Then, the obtained calculation results were evaluated in terms of stabilization of the coefficient of friction (braking torque), as well as minimization of the maximum temperature, wear, braking time and pads mass. As a result, recommendations were given to select optimum brake pad material in combination with a cast-iron disc.


2019 ◽  
Vol 889 ◽  
pp. 508-517
Author(s):  
Duc Thang Le ◽  
Ngoc Diep Nguyen ◽  
Duy Tuan Le ◽  
Ngoc Tuyen Nguyen ◽  
Van Vinh Pham ◽  
...  

In this research, a new type of magneto-rheological brake (MRB) is proposed for small size motorcycle. The proposed MRB consists of a rotor with multiple trapezoidal teeth acting at multiple magnetic poles of the brake. In order to generate a magnetic field for controlling braking torque, a magnetic coil is placed on each side-housing of the brake. The inner face of each side-housing also has trapezoidal shape mating with the trapezoidal teeth of the rotor via MRF layer. By applying countercurrents to the coils, a magnetic fluid is generated with some magnetic flux going across the MRF layer (MRF duct) between the rotor teeth and their mating poles on the housing. By using multiple poles with trapezoidal shape, a high braking torque of the brake is expected while the size of the brake is still kept to be compacted. After an introduction about the development of MRBs in automotive engineering, the configuration of the proposed MRB is presented and its braking torque is derived based on Bingham rheological model of MRF. The proposed MRB is then optimally designed based on finite element analysis (FEA). Its optimized MRB is then manufactured and its braking performance is experimentally investigated. The MRB is then installed in a prototype motorcycle and the field test of this prototype motorcycle integrated with the MRB is then conducted.


Sign in / Sign up

Export Citation Format

Share Document