Performance analysis of a new hydropneumatic inerter-based suspension system with semi-active control effect

Author(s):  
Lin Yang ◽  
Ruochen Wang ◽  
Xiangpeng Meng ◽  
Zeyu Sun ◽  
Wei Liu ◽  
...  

This paper develops a hydropneumatic inerter-based suspension system theoretical model to analyze its performance, based on the mechanical network theory of inerter and semi-active control. Comparison of the stiffness and damping characteristics among a passive hydropneumatic suspension system, semi-active hydropneumatic suspension system based on skyhook control, and hydropneumatic inerter-based suspension system is conducted. Moreover, the relationship between the internal coefficient of the inerter and the damping coefficient of the hydropneumatic suspension is investigated. The simulation results of the flow–volume curves of the hydropneumatic inerter-based suspension system are close to those of the semi-active hydropneumatic suspension system based on skyhook control. Furthermore, the performance of a quarter vehicle model with the hydropneumatic inerter-based suspension system is analyzed and compared to that with the semi-active hydropneumatic suspension system based on skyhook control. The simulation results show that the performance of the hydropneumatic inerter-based suspension system is as good as that of the semi-active hydropneumatic suspension system based on skyhook control, which means that the hydropneumatic inerter-based suspension system can achieve similar performance for semi-active control suspension. Finally, a prototype is developed, and a comparative bench test is carried out to verify the accuracy of the simulations. In addition, the hydropneumatic inerter-based suspension system can achieve semi-active control performance without additional hardware or energy loss.

1994 ◽  
Vol 04 (04) ◽  
pp. 379-393
Author(s):  
G. LEITMANN

With the advent of materials, such as electrorheological fluids, whose material properties can be altered rapidly by means of external stimuli, employing such materials as actuators for the controlled attenuation of undesirable vibrations is now possible. Such control schemes are dubbed semi-active in that they attenuate vibrations whether applied actively or passively. We investigate various such control schemes, allowing for both separate and joint control of the stiffness and damping characteristics of the material. Simulation results are given for the case of an electrorheological fluid.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Hongmin Zhang ◽  
Xin Fang

The interconnected hydropneumatic suspension (ICHPS) has not only the nonlinear stiffness and damping of the independent hydropneumatic suspension (IDHPS) but also antiroll and antipitch functions. The existing analysis of hydropneumatic suspension damping mainly focuses on the orifice and check valve in the suspension cylinder. In this study, the calculation formula of the damping force of ICHPS is established, and the numerical simulation results show that the damping characteristics of the hydraulic hose cannot be ignored. The influence of check valve and hose on the damping characteristics is analyzed. Through the equivalent energy method, the equivalent compression damping ratio and the equivalent recovery damping ratio of the ICHPS are established. It is pointed out that when designing the damping characteristics of the ICHPS, it is necessary to select the orifices, check valves, and hose damping reasonably to make the damping characteristics get the best match.


2019 ◽  
Vol 67 (3) ◽  
pp. 190-196
Author(s):  
Ning Han

Based on a prediction method of the scattered sound pressure, an active control system was proposed in previous work for the three-dimension scattered radiation, where all the relevant simulations and experiments were implemented in three-dimensional free sound field. However, for practical applications, such as the anti-eavesdropping system or the stealth system for submarines, the sound field conditions are usually complex, and the most common case is the one with reflecting surface. It is questionable whether the previous control system is still effective in non-free sound field, or what improvements should be operated to ensure the control effect. In this article, based on the mirror image principle, two methods of calculating the control source strengths are proposed for the scattered radiation control, and numerical simulations with one-channel and multi-channel system are implemented to detect the corresponding control effect. It is seen that the local active control for the scattered radiation is still effective, and the reduction of the sound pressure level as well as the control area is extended with the increasement of the error sensors and control sources.


Author(s):  
Akira Fukukita ◽  
Tomoo Saito ◽  
Keiji Shiba

We study the control effect for a 20-story benchmark building and apply passive or semi-active control devices to the building. First, the viscous damping wall is selected as a passive control device which consists of two outer plates and one inner plate, facing each other with a small gap filled with viscous fluid. The damping force depends on the interstory velocity, temperature and the shearing area. Next, the variable oil damper is selected as a semi-active control device which can produce the control forces by little electrical power. We propose a damper model in which the damping coefficient changes according to both the response of the damper and control forces based on an LQG feedback and feedforward control theory. It is demonstrated from the results of a series of simulations that the both passive device and semi-active device can effectively reduce the response of the structure in various earthquake motions.


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Sannia Mareta ◽  
Dunant Halim ◽  
Atanas A. Popov

This work proposes a method for controlling vibration using compliant-based actuators. The compliant actuator combines a conventional actuator with elastic elements in a series configuration. The benefits of compliant actuators for vibration control applications, demonstrated in this work, are twofold: (i) vibration reduction over a wide frequency bandwidth by passive control means and (ii) improvement of vibration control performance when active control is applied using the compliant actuator. The vibration control performance is compared with the control performance achieved using the well-known vibration absorber and conventional rigid actuator systems. The performance comparison showed that the compliant actuator provided a better flexibility in achieving vibration control over a certain frequency bandwidth. The passive and active control characteristics of the compliant actuator are investigated, which shows that the control performance is highly dependent on the compliant stiffness parameter. The active control characteristics are analyzed by using the proportional-derivative (PD) control strategy which demonstrated the capability of effectively changing the respective effective stiffness and damping of the system. These attractive dual passive–active control characteristics are therefore advantageous for achieving an effective vibration control system, particularly for controlling the vibration over a specific wide frequency bandwidth.


Author(s):  
Jaychandar Muthu ◽  
Kanak Soundrapandian ◽  
Jyoti Mukherjee

For suspension components, bench testing for strength is mostly accomplished at component level. However, replicating loading and boundary conditions at the component level in order to simulate the suspension system environment may be difficult. Because of this, the component's bench test failure mode may not be similar to its real life failure mode in vehicle environment. A suspension system level bench test eliminates most of the discrepancies between simulated component level and real life vehicle level environments resulting in higher quality bench tests yielding realistic test results. Here, a suspension level bench test to estimate the strength of its trailing arm link is presented. A suspension system level nonlinear finite element model was built and analyzed using ABAQUS software. The strength loading was applied at the wheel end. The analysis results along with the hardware test correlations are presented. The reasons why a system level test is superior to a component level one are also highlighted.


2006 ◽  
Vol 129 (3) ◽  
pp. 850-857 ◽  
Author(s):  
Luis San Andrés ◽  
Dario Rubio ◽  
Tae Ho Kim

Gas foil bearings (GFBs) satisfy the requirements for oil-free turbomachinery, i.e., simple construction and ensuring low drag friction and reliable high speed operation. However, GFBs have a limited load capacity and minimal damping, as well as frequency and amplitude dependent stiffness and damping characteristics. This paper provides experimental results of the rotordynamic performance of a small rotor supported on two bump-type GFBs of length and diameter equal to 38.10mm. Coast down rotor responses from 25krpm to rest are recorded for various imbalance conditions and increasing air feed pressures. The peak amplitudes of rotor synchronous motion at the system critical speed are not proportional to the imbalance introduced. Furthermore, for the largest imbalance, the test system shows subsynchronous motions from 20.5krpm to 15krpm with a whirl frequency at ∼50% of shaft speed. Rotor imbalance exacerbates the severity of subsynchronous motions, thus denoting a forced nonlinearity in the GFBs. The rotor dynamic analysis with calculated GFB force coefficients predicts a critical speed at 8.5krpm, as in the experiments; and importantly enough, unstable operation in the same speed range as the test results for the largest imbalance. Predicted imbalance responses do not agree with the rotor measurements while crossing the critical speed, except for the lowest imbalance case. Gas pressurization through the bearings’ side ameliorates rotor subsynchronous motions and reduces the peak amplitudes at the critical speed. Posttest inspection reveal wear spots on the top foils and rotor surface.


Sign in / Sign up

Export Citation Format

Share Document