Path tracking control of an autonomous vehicle with model-free adaptive dynamic programming and RBF neural network disturbance compensation

Author(s):  
Hongbo Wang ◽  
Chenglei Hu ◽  
Juntao Zhou ◽  
Lizhao Feng ◽  
Bin Ye ◽  
...  

The performance of the model-based controller is always affected by the uncertainty and nonlinearity of the model parameters in the vehicle path tracking process. To address this issue, a novel path tracking controller based on model-free adaptive dynamic programming (ADP) is proposed for autonomous vehicles in this paper. To be specific, the proposed controller obtains information from the online state and front-wheel angle input data which are repeatedly used to calculate the controller gain iteratively. So, this controller features not requiring accurate knowledge of vehicle model parameters for controller development. Meanwhile, the path tracking performance of the autonomous vehicle will be inevitably disturbed by unknown nonlinear external disturbance. To approximate this disturbance, the learning characteristics of Radial Basis Function Neural Network (RBFNN) are applied to generate compensation for the front-wheel angle. Afterward, the weight updating law of RBFNN is derived by Lyapunov function to ensure the stability and convergence of the whole system. Finally, Hardware in the loop (HIL) test results demonstrate that the proposed ADP-RBF controller can improve the comprehensive performance of the vehicle path tracking control system and achieve the balance between path tracking accuracy and minimum sideslip angle.

2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Runqiao Liu ◽  
Minxiang Wei ◽  
Nan Sang ◽  
Jianwei Wei

Curved path tracking control is one of the most important functions of autonomous vehicles. First, small turning radius circular bends considering bend quadrant and travel direction restrictions are planned by polar coordinate equations. Second, an estimator of a vehicle state parameter and road adhesion coefficient based on an extended Kalman filter is designed. To improve the convenience and accuracy of the estimator, the combined slip theory, trigonometric function group fitting, and cubic spline interpolation are used to estimate the longitudinal and lateral forces of the tire model (215/55 R17). Third, to minimize the lateral displacement and yaw angle tracking errors of a four-wheel steering (4WS) vehicle, the front-wheel steering angle of the 4WS vehicle is corrected by a model predictive control (MPC) feed-back controller. Finally, CarSim® simulation results show that the 4WS autonomous vehicle based on the MPC feed-back controller can not only significantly improve the curved path tracking performance but also effectively reduce the probability of drifting or rushing out of the runway at high speeds and on low-adhesion roads.


Author(s):  
Xiaolong Chen ◽  
Bing Zhou ◽  
Xiaojian Wu

Considering that when a vehicle travels on a low friction coefficient road with high speed, the path tracking ability declines. To keep the performance of path tracking and improve the stabilization under that situation, this article presents approaches to estimate the parameters and control the vehicle. First, the key states of the vehicle and the road adhesion coefficient are estimated by the unscented Kalman filter. This is followed by applying the linear time-varying model-based predictive controller to achieve path tracking control, and the initial tire steering angle control rate is obtained. Finally, the steering angle compensation controller is simultaneously designed by a simple receding horizon corrector algorithm to improve vehicle stability when the path is tracked on a low-adhesion coefficient or at high speed. The performance of the proposed approach is evaluated by software CarSim and MATLAB/Simulink. Simulation results show that an improvement in the performance of path tracking and stabilization can be achieved by the integrated controller under the variable road adhesion coefficient condition and high speed with 110 km/h.


Author(s):  
Xiaolin Ren ◽  
Hongwen Li

AbstractThis paper investigates a feature tracking control method for visual servoing (VS) manipulators adaptive dynamic programming (ADP)-based the unknown dynamics. The major superiority of ADP-based optimal control lies in that the visual tracking problem is converted to the feature tracking error control with optimal cost function. Moreover, an adaptive neural network observer is developed to approximate the entire uncertainties, which are utilized to construct an improved cost function. By establishing a critic neural network, the Hamilton–Jacobi–Bellman (HJB) equation is solved, and the approximate optimal error control policy is derived. The closed-loop VS manipulator system is verified to be ultimately uniformly bounded with the developed ADP-based feature tracking control strategy according to the Lyapunov theory. Finally, simulation results under various situations demonstrate that the proposed method achieves higher tracking accuracy than other methods, as well as satisfies energy optimal requirements.


Author(s):  
Fen Lin ◽  
Shaobo Wang ◽  
Youqun Zhao ◽  
Yizhang Cai

For autonomous vehicle path tracking control, the general path tracking controllers usually only consider vehicle dynamics’ constraints, without taking vehicle stability evaluation index into account. In this paper, a linear three-degree-of-freedom vehicle dynamics model is used as a predictive model. A comprehensive control method combining Model Predictive Control and Fuzzy proportional–integral–derivative control is proposed. Model Predictive Control is used to control the vehicle yaw stability and track the target path by considering the front wheel angle, sideslip angle, tire slip angles, and yaw rate during the path tracking. Fuzzy proportional–integral–derivative algorithm is adopted to maintain the vehicle roll stability by controlling the braking force of each tire. Co-simulation with CarSim and MATLAB/Simulink shows the designed controller has good tracking performance. The controller is smooth and effective and ensures handling stability in tracking the target path.


Author(s):  
Huiran Wang ◽  
Qidong Wang ◽  
Wuwei Chen ◽  
Linfeng Zhao ◽  
Dongkui Tan

To reduce the adverse effect of the functional insufficiency of the steering system on the accuracy of path tracking, a path tracking approach considering safety of the intended functionality is proposed by coordinating automatic steering and differential braking in this paper. The proposed method adopts a hierarchical architecture consisting of a coordinated control layer and an execution control layer. In coordinated control layer, an extension controller considering functional insufficiency of the steering system, tire force characteristics and vehicle driving stability is proposed to determine the weight coefficients of automatic steering and the differential braking, and a model predictive controller is designed to calculate the desired front wheel angle and additional yaw moment. In execution control layer, a H∞ steering angle controller considering external disturbances and parameter uncertainty is designed to track desired front wheel angle, and a braking force distribution module is used to determine the wheel cylinder pressure of the controlled wheels. Both simulation and experiment results show that the proposed method can overcome the functional insufficiency of the steering system and improve the accuracy of path tracking while maintaining the stability of the autonomous vehicle.


Sign in / Sign up

Export Citation Format

Share Document