Calculation method of belt material parameters for finite element tire model

Author(s):  
Lu Zhang ◽  
Shaohua Wang ◽  
Bing Li

The radial tire belt is composed of multi-layered fiber-reinforced cords with a very complex structure. Restricted by the computing speed, the simplified finite element (FE) tire model with equivalent belt is usually applied in the vehicle dynamic simulation. However, it is always difficult to obtain the material parameters of the equivalent belt. In this paper, a calculation method of equivalent belt material parameters for the simplified FE tire model is proposed based on the three-dimensional (3-D) anisotropic elasticity of the cord reinforced composites. The simulation results of the static radial stiffness, modal characteristics, and dynamic responses for the simplified FE tire model with parameters obtained by the calculation method were compared with experiment results. The results show that the deviation between the experiment and simulation is acceptable, and the validity of the calculation method is verified.

2012 ◽  
Vol 446-449 ◽  
pp. 837-840
Author(s):  
Yu Zhao ◽  
Shu Fang Yuan ◽  
Jian Wei Zhang

The underwater structure of power house is major structure under the dynamic loads of unit. The vibration problem is very common in operation. So the structures should have sufficient stiffness to resist dynamic loads of unit. This paper establishes three-dimensional finite element models with finite element analysis software—ANSYS. Dynamic characteristics of the power house and dynamic responses of structure under earthquake are analyzed. The results of the computation show that fluid-solid coupling may be ignored when studying dynamic characteristics of structures of the underground power house.


2014 ◽  
Vol 10 (4) ◽  
pp. 631-658 ◽  
Author(s):  
Mica Grujicic ◽  
Jennifer Snipes ◽  
S. Ramaswami ◽  
Fadi Abu-Farha

Purpose – The purpose of this paper is to propose a computational approach in order to help establish the effect of various self-piercing rivet (SPR) process and material parameters on the quality and the mechanical performance of the resulting SPR joints. Design/methodology/approach – Toward that end, a sequence of three distinct computational analyses is developed. These analyses include: (a) finite-element modeling and simulations of the SPR process; (b) determination of the mechanical properties of the resulting SPR joints through the use of three-dimensional, continuum finite-element-based numerical simulations of various mechanical tests performed on the SPR joints; and (c) determination, parameterization and validation of the constitutive relations for the simplified SPR connectors, using the results obtained in (b) and the available experimental results. The availability of such connectors is mandatory in large-scale computational analyses of whole-vehicle crash or even in simulations of vehicle component manufacturing, e.g. car-body electro-coat paint-baking process. In such simulations, explicit three-dimensional representation of all SPR joints is associated with a prohibitive computational cost. Findings – It is found that the approach developed in the present work can be used, within an engineering optimization procedure, to adjust the SPR process and material parameters (design variables) in order to obtain a desired combination of the SPR-joint mechanical properties (objective function). Originality/value – To the authors’ knowledge, the present work is the first public-domain report of the comprehensive modeling and simulations including: self-piercing process; virtual mechanical testing of the SPR joints; and derivation of the constitutive relations for the SPR connector elements.


2013 ◽  
Vol 756-759 ◽  
pp. 4591-4595
Author(s):  
Wen Yu Song

Three-dimensional finite element analysis of harmonic electromagnetic field in a large and complex structure 15-phase induction machine has been completed. Accurate 3D finite element machine model is established. The current density of stator and rotor and the entire vector flux density distribution are given, then been analyzed and explained. 3D air gap radial flux density is obtained and has been made harmonic analysis. We can get more accurate electromagnetic field distribution and performance parameters through 3D finite element calculation of electromagnetic field. This method can give theoretical basis for the multiphase machine development of new structure and can play reference in terms of structural optimization design.


2017 ◽  
Vol 24 (19) ◽  
pp. 4592-4603 ◽  
Author(s):  
Lei Xu ◽  
Zhaowei Chen ◽  
Wanming Zhai

This paper investigates a more advanced vertical vehicle–slab track interaction model (VTIM) by considering the discontinuity of track slabs, besides, it can be degenerated to the traditional two-dimensional model conveniently. Moreover, a cyclic calculation method (CCM) is further developed to solve infinite length calculations. On this basis, the proposed dynamic model and CCM are validated by comparing with the more comprehensive three-dimensional train–track model and fixed-point excitation method. Then, from aspects of probability statistics and frequency analysis, an illustrative example is particularly conducted to comprehensively characterize the dynamic responses of vehicle–slab track systems, in which the representative and realistic rail irregularity sets simulated by the track irregularity probabilistic model are used as the loading inputs. Results show that, with a low consumption of computational time and computer memory, the dynamic results derived from VTIM and CCM have a high accuracy, which indicates that the proposed dynamic model and calculation method can be efficiently and accurately used to analyze train–slab track interactions.


2000 ◽  
Vol 28 (2) ◽  
pp. 72-95 ◽  
Author(s):  
B. G. Kao

Abstract Traditional multibody dynamic (MBD) tire models concentrate on the tire patch force development and the tire in-plane characteristics. The tire lateral dynamics and nonlinear effects caused by the tire compliances during rough terrain driving and severe maneuvers are mostly neglected in vehicle analytical simulations. The tire finite element models, though capable of dealing with these phenomena, are basically not designed for quick vehicle dynamic evaluations. A simple three-dimensional (3-D) MBD tire model for full vehicle performance and maneuvering simulations over various road surfaces is therefore desirable for the ever expanding analysis capabilities and the improved accuracy of the computer-aided vehicle design analysis. In this paper a tire modeling concept to extend the in-plane dynamic tire model to full 3-D tire dynamics is proposed. Essentially, this tire model divides the traditional tire/wheel system model into three elements: two rigid bodies representing the wheel mass/inertia and the tire tread mass/inertia, and a spring/damper representing the sidewall visco-elasticity. Thus, 6 degrees-of-freedom (DOFs) are added for each tire over traditional tire models. Using any existing tire patch force calculation model, this proposed model can be used to simulate full 3-D dynamic responses of a vehicle. To implement this model, techniques to extract the nonlinear spring rates of the sidewalls and to enhance the tire patch force calculations over uneven terrains are explained in this paper. Results of the vehicle simulation using this tire model were compared with measured field data. They showed that this tire modeling concept yields a practical representation for tire 3-D nonlinear dynamic characteristics.


2012 ◽  
Vol 529 ◽  
pp. 257-263
Author(s):  
Deng Hui Cai ◽  
Xin Tan Ma

Since the theory of one-dimensional plane wave can not accurately predict the internal sound field of the complex structure muffler. The three-dimensional finite element method is adopted to establish the acoustic model of the composite muffler based on the application of composite muffler model. Transmission loss and characteristics of internal sound field of the composite muffler's are calculated through acoustic vibration software Sysnoise. The calculation shows that the muffler under the interference of fluid flow has the higher transmission loss compared with the absence of liquidity function with an additional silencer band. The analysis method and conclusions provide a basis for the design of composite muffler.


Author(s):  
Seokyong Chae ◽  
Fredrik O¨ijer ◽  
Mustafa El-Gindy ◽  
Mukesh Trivedi ◽  
Inge Johansson

A detailed nonlinear finite element analysis (FEA) model of a radial-ply truck tire, 295/75R22.5, has been developed using explicit FEA simulation software, PAM-SHOCK. For the validation of the model, the tire model predictions of contact patch area, vertical stiffness, and cornering characteristics, such as cornering force and aligning moment versus slip angle, at different vertical loads are in good agreement with available physical measurements. For complete vehicle simulations, a simplified rigid ring tire model is required for efficient analysis throughput. The behavior of such a tire model can be verified and improved by comparing responses with the developed FEA model. Moreover, the in-plane and out-of-plane tire parameters needed for the simplified rigid ring tire model could be virtually determined at various vertical loads by testing the FEA tire model instead of performing expensive tire parameters measurements. The in-plane and out-of-plane tire parameters are implemented into a simplified rigid ring tire model to perform durability tests. The durability tests are conducted to examine dynamic behaviors by using the FEA truck tire and the rigid ring tire models during running on a water drainage ditch at various vertical tire loads. The ditch is 12.0-cm (4.72-in) deep and lies in 45-degree angle against tire traveling direction. The dynamic responses such as vertical displacement, forces, and moments at tire center are predicted using both tire models. The results obtained from both models are in reasonable agreement.


Sign in / Sign up

Export Citation Format

Share Document