Multiple slip effects on magnetic-Carreau fluid in a suspension of gyrotactic microorganisms over a slendering sheet

Author(s):  
CSK Raju ◽  
Mohammad Mainul Hoque ◽  
Najeeb Alam Khan ◽  
Minhaj Islam ◽  
Santosh Kumar

A computational simulation of two-dimensional magnetic-Carreau fluid in a suspension of gyrotactic microorganisms past a slendering sheet with variable thickness is investigated for slenderness parameters varied in the range of –0.2 to 1.0. Owing to the noticeable implication in various engineering applications, the effects of multiple slip is considered in the present simulation along with the Soret and the Dufour effects for the heat and mass transfer controlling process. The numerical values of the velocity, temperature, concentration, and the density of the motile organisms are computed by the robust Runge–Kutta-based Newton’s scheme. The thermal and concentration boundary layer are changed with the increase in the multiple slip parameters such as velocity slip, temperature slip, concentration slip, and diffusion slip parameters. With the rise in the Carreau fluid power index parameter, the velocity field increases while it declines with the velocity slip and magnetic field parameter. The increasing values of velocity slip, Dufour number, Soret number, and magnetic parameter boost up the density of the motile organism profiles for different slenderness parameter considered in the present study. The effect of the nondimensional factors on the skin friction, local Nusselt, local Sherwood, and the density numbers of the motile organisms are discussed with the assistance of the table for three different slenderness parameters. It is found that multiple slip parameters enable to control the heat and mass transfer rate. Finally, both the qualitative and quantitative comparisons of the present results with previous study are presented in the tabular form and are found to be in excellent agreement.

2018 ◽  
Vol 16 (9) ◽  
pp. 701-721
Author(s):  
Shalini JAIN ◽  
Shweta BOHRA

In this paper, a steady free convective heat and mass transfer boundary layer flow of an electrically conducting viscous fluid from a sphere in a porous medium with thermal radiation is studied. Soret and Dufour effects, velocity slip, and thermal slip are considered at the boundary. The governing PDE is transformed into non-linear ODE using suitable similarity transformations and solved numerically using bvp4c solver of MATLAB. The effect of Schmidt number (Sc), concentration to thermal buoyancy ratio parameter (Nb), Dufour number (Du), Soret number (Sr), radiation parameter (N), permeability parameter (K), dimensionless velocity slip parameter (g), and dimensionless thermal jump parameter (j) on  velocity, temperature and concentration fields, skin friction, and heat and mass transfer rates are analyzed and presented through graphs and tables.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 231
Author(s):  
Muhammad Awais ◽  
Saeed Ehsan Awan ◽  
Muhammad Asif Zahoor Raja ◽  
Nabeela Parveen ◽  
Wasim Ullah Khan ◽  
...  

Rheology of MHD bioconvective nanofluid containing motile microorganisms is inspected numerically in order to analyze heat and mass transfer characteristics. Bioconvection is implemented by combined effects of magnetic field and buoyancy force. Gyrotactic microorganisms enhance the heat and transfer as well as perk up the nanomaterials’ stability. Variable transport properties along with assisting and opposing flow situations are taken into account. The significant influences of thermophoresis and Brownian motion have also been taken by employing Buongiorno’s model of nanofluid. Lie group analysis approach is utilized in order to compute the absolute invariants for the system of differential equations, which are solved numerically using Adams-Bashforth technique. Validity of results is confirmed by performing error analysis. Graphical and numerical illustrations are prepared in order to get the physical insight of the considered analysis. It is observed that for controlling parameters corresponding to variable transport properties c2, c4, c6, and c8, the velocity, temperature, concentration, and bioconvection density distributions accelerates, respectively. While heat and mass transfer rates increases for convection parameter and bioconvection Rayleigh number, respectively.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Ime Jimmy Uwanta ◽  
Halima Usman

The present paper investigates the combined effects of Soret and Dufour on free convective heat and mass transfer on the unsteady one-dimensional boundary layer flow over a vertical channel in the presence of viscous dissipation and constant suction. The governing partial differential equations are solved numerically using the implicit Crank-Nicolson method. The velocity, temperature, and concentration distributions are discussed numerically and presented through graphs. Numerical values of the skin-friction coefficient, Nusselt number, and Sherwood number at the plate are discussed numerically for various values of physical parameters and are presented through tables. It has been observed that the velocity and temperature increase with the increase in the viscous dissipation parameter and Dufour number, while an increase in Soret number causes a reduction in temperature and a rise in the velocity and concentration.


2020 ◽  
Vol 7 (3) ◽  
pp. 386-396
Author(s):  
Himanshu Upreti ◽  
Alok Kumar Pandey ◽  
Manoj Kumar

Abstract In this article, the mass and heat transfer flow of Ag–kerosene oil nanofluid over a cone under the effects of suction/injection, magnetic field, thermophoresis, Brownian diffusion, and Ohmic-viscous dissipation was examined. On applying the suitable transformation, PDEs directing the flow of nanofluid were molded to dimensionless ODEs. The solution of the reduced boundary value problem was accomplished by applying Runge–Kutta–Fehlberg method via shooting scheme and the upshots were sketched and interpreted. The values of shear stress and coefficients of heat and mass transfer were attained for some selected values of governing factors. The obtained results showed that when the amount of surface mass flux shifts from injection to the suction domain, the heat and mass transfer rate grew uniformly. However, they have regularly condensed with the rise in the magnitude of the magnetic field and particle volume fraction. Several researches have been done using cone-shaped geometry under the influence of various factors affecting the fluid flow, yet, there exists no such investigation that incorporated the response of viscous-Ohmic dissipation, heat absorption/generation, suction/blowing, Brownian diffusion, and thermophoresis on the hydro-magnetic flow of silver-kerosene oil nanofluid over a cone.


Coatings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 523
Author(s):  
Asad Ullah ◽  
Abdul Hafeez ◽  
Wali Khan Mashwani ◽  
Ikramullah ◽  
Wiyada Kumam ◽  
...  

The flow of conducting Carreau fluid on a permeable stretching/shrinking surface is analytically investigated by considering the thermal radiation, mass transfer, and cross diffusion effects. A uniform external magnetic field is employed which gives rise to Hall current. The nonlinear PDEs are converted to a set of ODEs using similarity transformations. The developed ODEs are solved using the well established mathematical procedure of Homotopy Analysis Method (HAM). The influence of associated parameters over the state variables of the Carreau fluid are analytically studied and discussed through different graphs. It is found that fluid velocity augments (drops) with the rising power law index and Hall parameter (velocity slip and material parameters). The temperature field increases with the higher Dufour number and radiation parameter values, and decreases with larger Prandtl number. The concentration field augments with the larger Soret number and velocity slip parameter values whereas drops with the rising Schmidt number. The variations in skin friction, local Nusselt and Sherwood numbers are discussed using tables and it is noticed that the mass and heat energy transfer rates are controlled by the varying values of Dufour and Soret parameters. The comparison between present and published work shows complete agreement.


2017 ◽  
Vol 377 ◽  
pp. 111-126 ◽  
Author(s):  
C. Sulochana ◽  
G.P Ashwinkumar ◽  
Naramgari Sandeep

In this study, we investigated the 2D MHD flow of a dissipative Maxwell nanofluid past an elongated sheet with uneven heat source/sink, Brownian moment and thermophoresis effects. The flow governing PDEs are transmuted into nonlinear ODEs adopting the suitable similarity transmissions. Further, the RK-4 technique is employed to acquire the numerical solutions. The impact of pertinent parameters such as thermal radiation, frictional heating, irregular heat source/sink, biot number, Brownian moment and thermophoresis on the flow quantities such as velocity, thermal and concentration fields likewise friction factor, heat and mass transfer rates are bestowed with the succour of graphs and tables. Dual nature is witnessed for Newtonian and non-Newtonian fluid cases. It is noticed that the heat and mass transfer rate in Newtonian fluid larger as compared with non-Newtonian fluid.


2020 ◽  
Vol 17 (1) ◽  
pp. 65-101 ◽  
Author(s):  
A. Ali ◽  
Soma Mitra Banerjee ◽  
S. Das

PurposeThe purpose of this study is to analyze an unsteady MHD Darcy flow of nonNewtonian hybrid nanoliquid past an exponentially accelerated vertical plate under the influence of velocity slip, Hall and ion slip effects in a rotating frame of reference. The fluids in the flow domain are assumed to be viscously incompressible electrically conducting. Sodium alginate (SA) has been taken as a base Casson liquid. A strong uniform magnetic field is applied under the assumption of low magnetic Reynolds number. Effect of Hall and ion-slip currents on the flow field is examined. The ramped heating and time-varying concentration at the plate are taken into consideration. First-order homogeneous chemical reaction and heat absorption are also considered. Copper and alumina nanoparticles are dispersed in base fluid sodium alginate to be formed as hybrid nanoliquid.Design/methodology/approachThe model problem is first formulated in terms of partial differential equations (PDEs) with physical conditions. Laplace transform method (LTM) is used on the nondimensional governing equations for their closed-form solution. Based on these results, expressions for nondimensional shear stresses, rate of heat and mass transfer are also determined. Graphical presentations are chalked out to inspect the impacts of physical parameters on the pertinent physical flow characteristics. Numerical values of the shear stresses, rate of heat and mass transfer at the plate are tabulated for various physical parameters.FindingsNumerical exploration reveals that a significant increase in the secondary flow (i.e. crossflow) near the plate is guaranteed with an augmenting in Hall parameter or ion slip parameter. MHD and porosity have an opposite effect on velocity component profiles for both types of nanoliquids. Result addresses that both shear stresses are strongly enhanced by the Casson effect. Also, hybrid nanosuspension in Casson fluid (sodium alginate) exhibits a lower rate of heat transfer than usual nanoliquid.Social implicationsThis model may be pertinent in cooling processes of metallic infinite plate in bath and hybrid magnetohydrodynamic (MHD) generators, metallurgical process, manufacturing dynamics of nanopolymers, magnetic field control of material processing, synthesis of smart polymers, making of paper and polyethylene, casting of metals, etc.Originality/valueThe originality of this study is to obtain an analytical solution of the modeled problem by using the Laplace transform method (LTM). Such an exact solution of nonNewtonian fluid flow, heat and mass transfer is rare in the literature. It is also worth remarking that the influence of Hall and ion slip effects on the flow of nonNewtonian hybrid nanoliquid is still an open question.


Sign in / Sign up

Export Citation Format

Share Document