scholarly journals Non-Linear Thermal Radiations and Mass Transfer Analysis on the Processes of Magnetite Carreau Fluid Flowing Past a Permeable Stretching/Shrinking Surface under Cross Diffusion and Hall Effect

Coatings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 523
Author(s):  
Asad Ullah ◽  
Abdul Hafeez ◽  
Wali Khan Mashwani ◽  
Ikramullah ◽  
Wiyada Kumam ◽  
...  

The flow of conducting Carreau fluid on a permeable stretching/shrinking surface is analytically investigated by considering the thermal radiation, mass transfer, and cross diffusion effects. A uniform external magnetic field is employed which gives rise to Hall current. The nonlinear PDEs are converted to a set of ODEs using similarity transformations. The developed ODEs are solved using the well established mathematical procedure of Homotopy Analysis Method (HAM). The influence of associated parameters over the state variables of the Carreau fluid are analytically studied and discussed through different graphs. It is found that fluid velocity augments (drops) with the rising power law index and Hall parameter (velocity slip and material parameters). The temperature field increases with the higher Dufour number and radiation parameter values, and decreases with larger Prandtl number. The concentration field augments with the larger Soret number and velocity slip parameter values whereas drops with the rising Schmidt number. The variations in skin friction, local Nusselt and Sherwood numbers are discussed using tables and it is noticed that the mass and heat energy transfer rates are controlled by the varying values of Dufour and Soret parameters. The comparison between present and published work shows complete agreement.

Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 656
Author(s):  
T. Abdeljawad ◽  
Asad Ullah ◽  
Hussam Alrabaiah ◽  
Ikramullah ◽  
Muhammad Ayaz ◽  
...  

The dynamics of the 3-dimensional flow of magnetized Carreau fluid past a paraboloid surface of revolution is studied through thermal radiation and mass transfer analysis. The impacts of Brownian motion and chemical reaction rate are considered on the flow dynamics. The system of nonlinear PDEs are converted to coupled ODEs by employing suitable transformation relations. The developed ODEs are solved by applying the standard procedure of homotopy analysis method (HAM). The impacts of various interesting parameters on the state variables of the Carreau fluid (velocity components, temperature, concentration, and shear stress) are explained through various graphs and tables. It is found that the horizontal velocity components augment with the rising magnetic parameter and Grashof number values. The fluid temperature augments with the higher values of the pertinent parameters except Prandtl number. The Nusselet number and fluid concentration enhance with the augmenting Brownian motion parameter. The shear stress augments with the rising Grashof number. The agreement of the obtained and published results validate the accuracy of the employed technique.


2010 ◽  
Vol 65 (10) ◽  
pp. 781-792 ◽  
Author(s):  
Sohail Nadeem ◽  
Noreen Sher Akbar

This article is devoted to the study of peristaltic transport of a Carreau fluid in a vertical annulus under the consideration of long wavelength. The flow is investigated in a wave frame of reference moving with the velocity of the wave. Exact solutions have been evaluated for temperature and concentration field, while approximated analytical and numerical solutions are found for the velocity field using (i) the perturbation method and (ii) the shooting method. The effects of various emerging parameters are investigated graphically.


2018 ◽  
Vol 9 (4) ◽  
pp. 1189-1204 ◽  
Author(s):  
Gnaneswara Reddy Machireddy ◽  
Sandeep Naramgari

Author(s):  
CSK Raju ◽  
Mohammad Mainul Hoque ◽  
Najeeb Alam Khan ◽  
Minhaj Islam ◽  
Santosh Kumar

A computational simulation of two-dimensional magnetic-Carreau fluid in a suspension of gyrotactic microorganisms past a slendering sheet with variable thickness is investigated for slenderness parameters varied in the range of –0.2 to 1.0. Owing to the noticeable implication in various engineering applications, the effects of multiple slip is considered in the present simulation along with the Soret and the Dufour effects for the heat and mass transfer controlling process. The numerical values of the velocity, temperature, concentration, and the density of the motile organisms are computed by the robust Runge–Kutta-based Newton’s scheme. The thermal and concentration boundary layer are changed with the increase in the multiple slip parameters such as velocity slip, temperature slip, concentration slip, and diffusion slip parameters. With the rise in the Carreau fluid power index parameter, the velocity field increases while it declines with the velocity slip and magnetic field parameter. The increasing values of velocity slip, Dufour number, Soret number, and magnetic parameter boost up the density of the motile organism profiles for different slenderness parameter considered in the present study. The effect of the nondimensional factors on the skin friction, local Nusselt, local Sherwood, and the density numbers of the motile organisms are discussed with the assistance of the table for three different slenderness parameters. It is found that multiple slip parameters enable to control the heat and mass transfer rate. Finally, both the qualitative and quantitative comparisons of the present results with previous study are presented in the tabular form and are found to be in excellent agreement.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 566
Author(s):  
Shahid Khan ◽  
Mahmoud M. Selim ◽  
Aziz Khan ◽  
Asad Ullah ◽  
Thabet Abdeljawad ◽  
...  

The 3D Carreau fluid flow through a porous and stretching (shrinking) sheet is examined analytically by taking into account the effects of mass transfer, thermal radiation, and Hall current. The model equations, which consist of coupled partial differential equations (PDEs), are simplified to ordinary differential equations (ODEs) through appropriate similarity relations. The analytical procedure of HAM (homotopy analysis method) is employed to solve the coupled set of ODEs. The functional dependence of the hydromagnetic 3D Carreau fluid flow on the pertinent parameters are displayed through various plots. It is found that the x-component of velocity gradient (f′(η)) enhances with the higher values of the Hall and shrinking parameters (m,ϱ), while it reduces with magnetic parameter and Weissenberg number (M,We). The y-component of fluid velocity (g(η)) rises with the augmenting values of m and M, while it drops with the augmenting viscous nature of the Carreau fluid associated with the varying Weissenberg number. The fluid temperature θ(η) enhances with the increasing values of radiation parameter (Rd) and Dufour number (Du), while it drops with the rising Prandtl number (Pr). The concentration field (ϕ(η)) augments with the rising Soret number (Sr) while drops with the augmenting Schmidt number (Sc). The variation of the skin friction coefficients (Cfx and Cfz), Nusselt number (Nux) and Sherwood number (Shx) with changing values of these governing parameters are described through different tables. The present and previous published results agreement validates the applied analytical procedure.


2011 ◽  
Vol 133 (8) ◽  
Author(s):  
Dong-Hyeog Yoon ◽  
Kyung-Soo Yang ◽  
Klaus Bremhorst

Characteristics of turbulent mass transfer around a rotating circular cylinder have been investigated by Direct Numerical Simulation. The concentration field was computed for three different cases of Schmidt number, Sc = 1, 10 and 100 at ReR* = 336. Our results confirm that the thickness of the Nernst diffusion layer decreases as Sc increases. Wall-limiting behavior within the diffusion layer was examined and compared with that of channel flow. Concentration fluctuation time scale was found to scale with r+2, while the time scale ratio nearly equals the Schmidt number throughout the diffusion layer. Scalar modeling closure constants based on gradient diffusion models were found to vary considerably within the diffusion layer. Results of an octant analysis show the significant role played by the ejection and sweep events just as is found for flat plate, channel, and pipe flow boundary layers. Turbulence budgets revealed a strong Sc dependence of turbulent scalar transport.


Author(s):  
Foukeea Qasim ◽  
Tian-Chuan Sun ◽  
S. Z. Abbas ◽  
W. A. Khan ◽  
M. Y. Malik

This paper aims to investigate the time-dependent stagnation point flow of an Oldroyd-B fluid subjected to the modified Fourier law. The flow into a vertically stretched cylinder at the stagnation point is discussed. The heat flux model of a non-Fourier is intended for the transfer of thermal energy in fluid flow. The study is carried out on the surface heating source, namely the surface temperature. The developed nonlinear partial differential equation for regulating fluid flow and heat transport is transformed via appropriate similarity variables into a nonlinear ordinary differential equation. The development and analysis of convergent series solutions were considered for velocity and temperature. Prandtl number numerical values are computed and investigated. This study’s findings are compared to the previous findings. By making use of the bvp4c Matlab method, numerical solutions are obtained. Besides, high buoyancy parameter values are found to increase the fluid velocity for the stimulating approach. By improving the thermal relaxation time parameter values, heat transfer in the fluid flow decreases. The temperature field effects are displayed graphically.


Sign in / Sign up

Export Citation Format

Share Document