Thermal and chemically reactive features of Casson nanofluid flow with thermophoresis and Brownian effect over an exponentially stretching surface

Author(s):  
Muhammad Naveed Khan ◽  
Rifaqat Ali ◽  
Hijaz Ahmad ◽  
Nadeem Abbas ◽  
Abd Allah A. Mousa ◽  
...  

Heat and mass transfer of the MHD flow of Casson nanofluid by an exponential stretching sheet discussed in this analysis. The MHD with joule heating effects for Casson nanofluid numerically investigated. To characterize the transport property of heat and mass, we considered the thermophoresis and Brownian effect along with thermal radiation and thermophoretic effects. Additionally, we consider the microorganism theory to analyze the suspended nanoparticles by bio-convection. The mathematical model developed on the base of boundary layer flow of casson nanofluid at exponentially stretching surface in term of partial differential equations. The partial differential equations are transformed into nonlinear ordinary differential equations by means of similarity variable transformations. The non-dimensionalized differential equations have numerically tackled by using the Bvp4c MATLAB technique. The graphical outcomes are obtained against the various parameters. Moreover, physical quantities are examined graphically and tabulating data. It is reviewed that resistance of fluid flow improves by the higher estimation of the Casson fluid parameter. Therefore, the axial and transverse velocities are reduced. Further, it is noticed from the tabulated data that more vital values of the Casson fluid parameter diminishes the skin friction and mass transfer rate but enhances the heat transfer rate.

2016 ◽  
Vol 13 (2) ◽  
pp. 165-177 ◽  
Author(s):  
P. Bala Anki Reddy

An analysis is carried out to investigate the steady two-dimensional magnetohydrodynamic boundary layer flow of a Casson fluid over an exponentially stretching surface in the presence of thermal radiation and chemical reaction. Velocity, thermal and solutal slips are considered instead of no-slip conditions at the boundary. Stretching velocity, wall temperature and wall concentration are considered in the exponential forms. The non-linear partial differential equations are converted into a system of non-linear ordinary differential equations by similarity transformations. The resultant non-linear ordinary differential equations are solved numerically by fourth order Runge-Kutta method along with shooting technique. The influence of various parameters on the fluid velocity, temperature, concentration, wall skin friction coefficient, the heat transfer coefficient and the Sherwood number have been computed and the results are presented graphically and discussed quantitatively. Comparisons with previously published works are performed on various special cases and are found to be in excellent agreement.  


2020 ◽  
Vol 26 ◽  
pp. 112-125
Author(s):  
Ibrahim Yakubu Seini ◽  
Golbert Aloliga ◽  
Baba Ziblim ◽  
Oluwole Daniel Makinde

An analysis of aCasson fluid flowing over a porous exponentially stretching surface with radiation has been studied. A non-Newtonian fluid model was developed for the flow and similarity analysis used in the transformation process. The model of partial differential equations was transformed into ordinary differential equations and reduced into a system of first order differential equations which was then solved using the Fourth-order Runge-Kutta algorithm alongside the Newton Raphson shooting method. The results have been presented graphically and in tabular form for various controlling parameters of the problem. It is observed that general control can be achieved by the permeability of the surface and the value of the Casson parameter.


2018 ◽  
Vol 28 (12) ◽  
pp. 2769-2783 ◽  
Author(s):  
Prabhugouda Mallanagouda Patil ◽  
Shashikant A. ◽  
Ebrahim Momoniat

Purpose This paper aims to investigate the unsteady mixed convection along an exponentially stretching surface in presence of transverse magnetic field applied at the wall and the opposing buoyancy flow. Design/methodology/approach The dimensional partial differential equations governing the flow field are transformed to non-dimensional coupled partial differential equations with the aid of suitable non-similar transformations. The resulting equations are then solved by the coalition of quasilinearization technique and the finite difference method. Findings Effects of volumetric heat source/sink, suction/blowing and other dimensionless parameters on velocity and temperature profiles are examined numerically. This investigation reveals that in presence of opposing buoyancy flow, the suction and volumetric heat source enhances the skin-friction coefficient, while the rise in the MHD increases the momentum boundary layer. Originality/value To the best of the authors’ knowledge, no such investigation has been carried out in the literature.


2019 ◽  
Vol 13 ◽  
pp. 174830261988136 ◽  
Author(s):  
Syed Tauseef Mohyud-Din ◽  
Muhammad Hamid ◽  
Muhammad Usman ◽  
Afshan Kanwal ◽  
Tamour Zubair ◽  
...  

In this article, the presented study is based on a modification in Gegenbauer wavelets method. The modeled problem is presented to analyze the phenomena of transfer of heat of rotating nanofluids in which the flow is produced by an exponentially stretching sheet. The purpose of this study is to examine the simultaneous effects of rotation of nanofluid and exponentially stretching on the shear stresses and heat transfer rate, cooling proficiency of water-based nanofluids containing Ag, Cu, Al2O3, TiO2, and CuO nanoparticles, and modification in Gegenbauer wavelets method to obtain the numerical solution of the said problem. A comparative analysis is presented among the outcomes obtained by modified Gegenbauer wavelets method, Runge–Kutta method of order-4, and already existing methods. The comparison shows that this modification is extremely efficient, and proposed technique could be extended for other physical problems.


2013 ◽  
Vol 30 (1) ◽  
pp. 67-75 ◽  
Author(s):  
Reda G. Abdel-Rahman ◽  
Ahmed M. Megahed

ABSTRACTThe Lie group transformation method is applied for solving the problem of mixed convection flow with mass transfer over a permeable stretching surface with Soret and Dufour effects. The application of Lie group method reduces the number of independent variables by one and consequently the system of governing partial differential equations reduces to a system of ordinary differential equations with appropriate boundary conditions. Further, the reduced non-linear ordinary differential equations are solved numerically by using the shooting method. The effects of various parameters governing the flow and heat transfer are shown through graphs and discussed. Our aim is to detect new similarity variables which transform our system of partial differential equations to a system of ordinary differential equations. In this work a special attention is given to investigate the effect of the Soret and Dufour numbers on the velocity, temperature and concentration fields above the sheet.


2019 ◽  
Vol 8 (4) ◽  
pp. 714-724 ◽  
Author(s):  
Syed Asif Hussain ◽  
Gohar Ali ◽  
Sher Muhammad ◽  
Syed Inayat Ali Shah ◽  
Mohammad Ishaq ◽  
...  

Author(s):  
Naramgari Sandeep ◽  
Chalavadi Sulochana ◽  
Isaac Lare Animasaun

With every passing day the heat transfer enhancement in the convectional base fluids plays a major role in several industrial and engineering processes. During these process nanofluids has attained its great importance to enhance the heat transfer rate in the convectional flows. Keeping this into view, in this study we investigated the stagnation point flow, heat and mass transfer behaviour of MHD Jeffrey nanofluid over a stretching surface in the presence of induced magneticfield, non-uniform heat source or sink and chemical reaction. Using similarity technique, the governing boundary layer partial differential equations are transformed into nonlinear coupled ordinary differential equations. The ordinary differential equations are solved numerically using Runge-Kutta-Felhberg scheme. An excellent agreement of the present results has been observed with the existed literature under some special cases. The effects of various dimensionless governing parameters on velocity, induced magneticfield, temperature and nanoparticle concentration profiles are discussed and presented through graphs. Also, friction factor, local Nusselt and Sherwood numbers are computed and discussed. Dual solutions are presented for suction and injection cases. It is found that dual solutions exist only for certain range of suction or injection parameter. It is also observed that an increase in the heat and mass transfer rate for higher values of Deborah number.


Sign in / Sign up

Export Citation Format

Share Document