Design optimization of hopper cars employing functionally graded honeycomb sandwich panels

Author(s):  
Ayman Al-Sukhon ◽  
Mostafa SA ElSayed

In this paper, a novel multiscale and multi-stage structural design optimization procedure is developed for the weight minimization of hopper cars. The procedure is tested under various loading conditions according to guidelines established by regulatory bodies, as well as a novel load case that considers fluid-structure interaction by means of explicit finite elements employing Smoothed Particle Hydrodynamics. The first stage in the design procedure involves topology optimization whereby optimal beam locations are determined within the design space of the hopper car wall structure. This is followed by cross-sectional sizing of the frame to concentrate mass in critical regions of the hopper car. In the second stage, hexagonal honeycomb sandwich panels are considered in lower load regions, and are optimized by means of Multiscale Design Optimization (MSDO). The MSDO drew upon the Kreisselmeier–Steinhausser equations to calculate a penalized cost function for the mass and compliance of a hopper car Finite Element Model (FEM) at the mesoscale. For each iteration in the MSDO, the FEM was updated with homogenized sandwich composite properties according to four design variables of interest at the microscale. A cost penalty is summed with the base cost by comparing results of the FEM with the imposed constraints. Efficacy of the novel design methodology is compared according to a baseline design employing conventional materials. By invoking the proposed methodology in a case study, it is demonstrated that a mass savings as high as 16.36% can be yielded for a single hopper car, which translates into a reduction in greenhouse gas emissions of 13.09% per car based on available literature.

Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1264 ◽  
Author(s):  
Kwang-Hee Im ◽  
Sun-Kyu Kim ◽  
Jong-An Jung ◽  
Young-Tae Cho ◽  
Yong-Deuck Woo ◽  
...  

For many years, scientists have been aware of the importance of terahertz waves (T-rays), which have now emerged as an NDE (nondestructive evaluation) technique for certain ranges of the electronic spectrum. The present study deals with T-ray scanning techniques of honeycomb sandwich composite panels with a carbon-fiber-reinforced plastic (CFRP) skin as well as the refractive index (n), and the electrical conductivity (α) of glass fiber-reinforced plastic (GFRP) composites. For this experiment, the degree of penetration to FRP composites is investigated for the THz transmitted power based on the angle in the electric field (E-field) direction vs. the direction of the unidirectional carbon fibers. Also, when CFRP skin honeycomb sandwich panels are manufactured for use in aerospace applications, aluminum wires are twisted together into the one-sided surface of the honeycomb sandwich panels to protect against thunderstorms. The aluminum wires are partly visible because they are embedded in the CFRP skin on the honeycomb sandwich panels. After finishing work with a paintjob, the wires become invisible. Thus, detecting the aluminum wires is a key issue for product monitoring. Based on a simple resistor model, an optimal scanning method is proposed to determine the preferred scan orientation on the baseline of the E-field in the direction of fibers to evaluate the level of transmission of T-rays according to the frequency bandwidth. Thus, the combination of angles required to detect the aluminum wires embedded with carbon fibers on the surface of the composite panels can be determined.


2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Hyeon-Seok Shim ◽  
Kwang-Yong Kim

Abstract Multi-objective design optimization was applied to the impeller and volute of a centrifugal pump using surrogate-based optimization techniques and three-dimensional Reynolds-averaged Navier–Stokes (RANS) analysis. The objective functions used to improve the hydraulic performance and operating stability of the pump were the hydraulic efficiency at the design condition and the flow rate at which the maximum volute pressure recovery coefficient occurs. Three design variables were selected based on the results of a sensitivity analysis: the blade outlet angle, the constants in determining the impeller outlet width, and the cross-sectional area of the volute. Using response surface approximation (RSA), surrogate models were constructed for the objective functions based on numerical results at experimental points obtained by Latin hypercube sampling (LHS). The representative Pareto-optimal solutions obtained by the multi-objective genetic algorithm (MOGA) show enhanced objective function values compared to the baseline design. The results of unsteady calculation show that the flow instability of the centrifugal pump was successfully suppressed by the optimization.


2021 ◽  
pp. 109963622110204
Author(s):  
Fenglian Li ◽  
Wenhao Yuan ◽  
Chuanzeng Zhang

Based on the hyperbolic tangent shear deformation theory, free vibration and sound insulation of two different types of functionally graded (FG) honeycomb sandwich plates with negative Poisson’s ratio are studied in this paper. Using Hamilton’s principle, the vibration and vibro-acoustic coupling dynamic equations for FG honeycomb sandwich plates with simply supported edges are established. By applying the Navier’s method and fluid–solid interface conditions, the derived governing dynamic equations are solved. The natural frequencies and the sound insulation of FG honeycomb sandwich plates obtained in this work are compared with the numerical results by the finite element simulation. It is proven that the theoretical models for the free vibration and the sound insulation are accurate and efficient. Moreover, FG sandwich plates with different honeycomb cores are investigated and compared. The corresponding results show that the FG honeycomb core with negative Poisson’s ratio can yield much lower frequencies. Then, the influences of various geometrical and material parameters on the vibration and sound insulation performance are systematically analyzed.


2005 ◽  
Vol 475-479 ◽  
pp. 1533-1536
Author(s):  
Liu Ding Tang ◽  
Xue Bin Zhang ◽  
Bing Zhe Li

Based on equivalent transformation by means of mathematically rigorous analytics, the stress analysis of heavy cross-sectional, non-homogeneous Functionally Graded Composites (FGCs) has been performed by the layering calculation model in axis-symmetrical mechanics problems. The partially calculated results of the non-homogeneous layered thick-walled metal tube are similar to the design and practice of machine forging moulds manufactured with special welding electrodes developed by the German Capilla Company. The analysis is used complementary to the investigation of the quantitative analysis of thermo-mechanical properties, or the so-called anti-design and the optimization of the graded structure for FGCs.


1996 ◽  
Vol 56 (4) ◽  
pp. 423-437 ◽  
Author(s):  
O.T. Thomson ◽  
W. Rits ◽  
D.C.G. Eaton ◽  
O. Dupont ◽  
P. Queekers

Sign in / Sign up

Export Citation Format

Share Document