scholarly journals Multiscale Design Optimization of Hopper Cars Employing Functionally Graded Honeycomb Sandwich Composites

2020 ◽  
Author(s):  
Ayman Al-Sukhon
Author(s):  
Ayman Al-Sukhon ◽  
Mostafa SA ElSayed

In this paper, a novel multiscale and multi-stage structural design optimization procedure is developed for the weight minimization of hopper cars. The procedure is tested under various loading conditions according to guidelines established by regulatory bodies, as well as a novel load case that considers fluid-structure interaction by means of explicit finite elements employing Smoothed Particle Hydrodynamics. The first stage in the design procedure involves topology optimization whereby optimal beam locations are determined within the design space of the hopper car wall structure. This is followed by cross-sectional sizing of the frame to concentrate mass in critical regions of the hopper car. In the second stage, hexagonal honeycomb sandwich panels are considered in lower load regions, and are optimized by means of Multiscale Design Optimization (MSDO). The MSDO drew upon the Kreisselmeier–Steinhausser equations to calculate a penalized cost function for the mass and compliance of a hopper car Finite Element Model (FEM) at the mesoscale. For each iteration in the MSDO, the FEM was updated with homogenized sandwich composite properties according to four design variables of interest at the microscale. A cost penalty is summed with the base cost by comparing results of the FEM with the imposed constraints. Efficacy of the novel design methodology is compared according to a baseline design employing conventional materials. By invoking the proposed methodology in a case study, it is demonstrated that a mass savings as high as 16.36% can be yielded for a single hopper car, which translates into a reduction in greenhouse gas emissions of 13.09% per car based on available literature.


2021 ◽  
pp. 109963622110204
Author(s):  
Fenglian Li ◽  
Wenhao Yuan ◽  
Chuanzeng Zhang

Based on the hyperbolic tangent shear deformation theory, free vibration and sound insulation of two different types of functionally graded (FG) honeycomb sandwich plates with negative Poisson’s ratio are studied in this paper. Using Hamilton’s principle, the vibration and vibro-acoustic coupling dynamic equations for FG honeycomb sandwich plates with simply supported edges are established. By applying the Navier’s method and fluid–solid interface conditions, the derived governing dynamic equations are solved. The natural frequencies and the sound insulation of FG honeycomb sandwich plates obtained in this work are compared with the numerical results by the finite element simulation. It is proven that the theoretical models for the free vibration and the sound insulation are accurate and efficient. Moreover, FG sandwich plates with different honeycomb cores are investigated and compared. The corresponding results show that the FG honeycomb core with negative Poisson’s ratio can yield much lower frequencies. Then, the influences of various geometrical and material parameters on the vibration and sound insulation performance are systematically analyzed.


2011 ◽  
Vol 275 ◽  
pp. 234-238 ◽  
Author(s):  
Biswajit Banerjee ◽  
Brian G. Smith

Inserts are used to transfer localized loads to structures made of sandwich composites. Stress concentrations near inserts are known to cause failures in sandwich panels. Experimental insert pull-out tests show that the load to failure can vary by 20% between batches of sandwich panels. Clearly, uncertainties in the mechanical properties of core and adhesive potting materials have to be accounted for in the optimal design of inserts in sandwich composites. In this paper, we use an one-dimensional computational model of an insert in a homogenized honeycomb sandwich panel to explore the utility of reliability methods in design. We show that the first-order reliability method (FORM) produces accurate estimates of loads that lead to low failure probabilities. We also observe that FORM is sensitive to the failure criteria and may not converge if the failure surface is not smooth and convex.


2006 ◽  
Vol 306-308 ◽  
pp. 739-744 ◽  
Author(s):  
Xiao Dong Cui ◽  
Tao Zeng ◽  
Dai Ning Fang

The impact response and energy absorbing characteristics of laminated, foam sandwich and honeycomb sandwich composites under ballistic impact have been studied in this investigation. An improved model is proposed in this paper to predict the ballistic property of the laminated composites. In this model, the material structures related to fiber lamination angles are designed in terms of their anti-impacting energy absorption capability. The ballistic limit speed and energy absorption per unit thickness of the three composites under different conditions are calculated. It is shown that honeycomb sandwich composite has the best ballistic resistance capability and energy absorption property among the three composites.


Sign in / Sign up

Export Citation Format

Share Document