Fabrication and compressive performance of plain carbon steel honeycomb sandwich panels

Author(s):  
Yu'an Jing ◽  
Shiju Guo ◽  
Jingtao Han ◽  
Yufei Zhang ◽  
Weijuan Li
Author(s):  
Y. L. Chen ◽  
J. R. Bradley

Considerable effort has been directed toward an improved understanding of the production of the strong and stiff ∼ 1-20 μm diameter pyrolytic carbon fibers of the type reported by Koyama and, more recently, by Tibbetts. These macroscopic fibers are produced when pyrolytic carbon filaments (∼ 0.1 μm or less in diameter) are thickened by deposition of carbon during thermal decomposition of hydrocarbon gases. Each such precursor filament normally lengthens in association with an attached catalyst particle. The subject of filamentous carbon formation and much of the work on characterization of the catalyst particles have been reviewed thoroughly by Baker and Harris. However, identification of the catalyst particles remains a problem of continuing interest. The purpose of this work was to characterize the microstructure of the pyrolytic carbon filaments and the catalyst particles formed inside stainless steel and plain carbon steel tubes. For the present study, natural gas (∼; 97 % methane) was passed through type 304 stainless steel and SAE 1020 plain carbon steel tubes at 1240°K.


Alloy Digest ◽  
1987 ◽  
Vol 36 (9) ◽  

Abstract SAE 1025 is a plain carbon steel for general-purpose construction and engineering. It is used in the hot-worked, cold-worked, normalized or water-quenched-and-tempered condition. It also is carburized and used for case-hardened parts. Its many uses include bolts, forgings, axles, machinery components, cold-extruded parts, pressure vessels, case-hardened parts, chain and sprocket assemblies, spinning tools and permanent-mold castings. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: CS-114. Producer or source: Carbon steel mills.


1996 ◽  
Vol 56 (4) ◽  
pp. 423-437 ◽  
Author(s):  
O.T. Thomson ◽  
W. Rits ◽  
D.C.G. Eaton ◽  
O. Dupont ◽  
P. Queekers

Author(s):  
Ayman Al-Sukhon ◽  
Mostafa SA ElSayed

In this paper, a novel multiscale and multi-stage structural design optimization procedure is developed for the weight minimization of hopper cars. The procedure is tested under various loading conditions according to guidelines established by regulatory bodies, as well as a novel load case that considers fluid-structure interaction by means of explicit finite elements employing Smoothed Particle Hydrodynamics. The first stage in the design procedure involves topology optimization whereby optimal beam locations are determined within the design space of the hopper car wall structure. This is followed by cross-sectional sizing of the frame to concentrate mass in critical regions of the hopper car. In the second stage, hexagonal honeycomb sandwich panels are considered in lower load regions, and are optimized by means of Multiscale Design Optimization (MSDO). The MSDO drew upon the Kreisselmeier–Steinhausser equations to calculate a penalized cost function for the mass and compliance of a hopper car Finite Element Model (FEM) at the mesoscale. For each iteration in the MSDO, the FEM was updated with homogenized sandwich composite properties according to four design variables of interest at the microscale. A cost penalty is summed with the base cost by comparing results of the FEM with the imposed constraints. Efficacy of the novel design methodology is compared according to a baseline design employing conventional materials. By invoking the proposed methodology in a case study, it is demonstrated that a mass savings as high as 16.36% can be yielded for a single hopper car, which translates into a reduction in greenhouse gas emissions of 13.09% per car based on available literature.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yong Xiao ◽  
Yefa Hu ◽  
Jinguang Zhang ◽  
Chunsheng Song ◽  
Xiangyang Huang ◽  
...  

The aim of this paper was to investigate bending responses of sandwich panels with aluminium honeycomb core and carbon fibre-reinforced plastic (CFRP) skins used in electric vehicle body subjected to quasistatic bending. The typical load-displacement curves, failure modes, and energy absorption are studied. The effects of fibre direction, stacking sequence, layer thickness, and loading velocity on the crashworthiness characteristics are discussed. The finite element analysis (FEA) results are compared with experimental measurements. It is observed that there are good agreements between the FEA and experimental results. Numerical simulations and experiment predict that the honeycomb sandwich panels with ±30° and ±45° fibre direction, asymmetrical stacking sequence (45°/−45°/45°/−45°), thicker panels (0.2 mm∼0.4 mm), and smaller loading velocity (5 mm/min∼30 mm/min) have better crashworthiness performance. The FEA prediction is also helpful in understanding the initiation and propagation of cracks within the honeycomb sandwich panels.


2018 ◽  
Vol 121 ◽  
pp. 77-90 ◽  
Author(s):  
Giulia Palomba ◽  
Gabriella Epasto ◽  
Vincenzo Crupi ◽  
Eugenio Guglielmino

2007 ◽  
Vol 190 (1-3) ◽  
pp. 204-210 ◽  
Author(s):  
B. Uyulgan ◽  
E. Dokumaci ◽  
E. Celik ◽  
I. Kayatekin ◽  
N.F. Ak Azem ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document