Application of the Equivalent Transformation Layering Calculation Model in Heavy Cross-Section FGCs - Axis-Symmetrical Mechanics Problems

2005 ◽  
Vol 475-479 ◽  
pp. 1533-1536
Author(s):  
Liu Ding Tang ◽  
Xue Bin Zhang ◽  
Bing Zhe Li

Based on equivalent transformation by means of mathematically rigorous analytics, the stress analysis of heavy cross-sectional, non-homogeneous Functionally Graded Composites (FGCs) has been performed by the layering calculation model in axis-symmetrical mechanics problems. The partially calculated results of the non-homogeneous layered thick-walled metal tube are similar to the design and practice of machine forging moulds manufactured with special welding electrodes developed by the German Capilla Company. The analysis is used complementary to the investigation of the quantitative analysis of thermo-mechanical properties, or the so-called anti-design and the optimization of the graded structure for FGCs.

Materials ◽  
2003 ◽  
Author(s):  
Geun Hyung Kim ◽  
Daniel K. Moeller ◽  
Yuri M. Shkel

A solid composite having locally micro-tailored structure can be produced by curing liquid polymeric suspensions in an electric field. The redistribution effect of the field-induced forces exceeds the effect of centrifugation, presently employed to manufacture functionally graded materials. Moreover, unlike centrifugational sedimentation, one can electrically rearrange the inclusions in desired targeted areas. The applied electric field can be employed to produce a composite having uniformly oriented structure or only modify the material in selected regions. This technology enables polymeric composites to be locally micro-tailored for given design objectives. We discuss electrical and rheological inteactions in liquid suspensions. Relationships between microstructure and mechanical properties of the obtained functionally graded composites are presented.


2012 ◽  
Vol 441 ◽  
pp. 713-716
Author(s):  
Mizue Kuriyagawa ◽  
Koh Hei Nitta

The mechanical yielding and necking behaviors of metallocene-catalyzed high density polyethylenes were investigated from a structural point of view. In particular the natural draw ratio was investigated with different crosshead speeds, molecular weights, and the cross-section shapes of sample specimens. We proposed a structural model for explaining the necking formation in addition to the molecular weight and the cross-sectional shape dependences of the natural draw ratio.


2016 ◽  
Vol 61 (2) ◽  
pp. 613-620
Author(s):  
K. Zarębski ◽  
M. Nykiel

Abstract The study describes the microstructural analysis of cylindrically-shaped functionally graded products sintered from iron powder with scheduled graded structure on the cross-section running from the core to the surface layer of the sinter. Different types of structure were produced using Distaloy SE powder in two compositions - one without the addition of carbon, and another with 0.6wt% C. Two methods were used to fill the die cavity and shape the products. The first method involving a two-step compaction of individual layers. The second method using an original technique of die filling enabled the formation of transition zone between the outer layer and the core still at the stage of product shaping. As part of microstructural analysis, structural constituents were identified and voids morphology was examined. Studies covered the effect of the type of the applied method on properties of the graded zone obtained in the manufactured products


2020 ◽  
Vol 29 (7) ◽  
pp. 1076-1099 ◽  
Author(s):  
Chunyang Zhang ◽  
Hang Lin ◽  
Caimou Qiu ◽  
Tingting Jiang ◽  
Jianhua Zhang

The mechanical properties of rock-like materials always attract the interest of many researchers. In this paper, we study the influence of specimen cross-section shape on uniaxial compressive strength as well as their deformation, damage and failure characteristics by uniaxial compression tests. The diameter and height of circular cross-section specimens are 50 and 100 mm, respectively, and the height and cross-sectional area of other specimens are equal to that of circular cross-sectional ones. Simulation and experimental results show that the cross-sectional shape has little effect on uniaxial compressive strength. Moreover, the effect on other mechanical properties is also very limited before the peak strength, such as stress–strain curve, rotation and motion of particles, contact damage and energy evolution of particles; however, it gradually becomes obvious after the peak strength. This is a very important feature, which affects the macroscopic form of failure of specimens and reflects the difference between failure surfaces. The shapes of failure surfaces obtained from numerical simulations are quite similar to the experimental results, which verify the reliability of numerical simulation results. Finally, the achievements can serve as a reference for related engineering issues.


2019 ◽  
Vol 26 (6) ◽  
pp. 905-913 ◽  
Author(s):  
Guangming Zheng ◽  
Zhenying Huang ◽  
Qun Yu ◽  
Wenqiang Hu ◽  
Xingyang Qiu ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Martin Frydrych ◽  
Alexander Greenhalgh ◽  
Fritz Vollrath

Abstract Silk producing arthropods spin solid fibres from an aqueous protein feedstock apparently relying on the complex structure of the silk protein and its controlled aggregation by shear forces, alongside biochemical changes. This flow-induced phase-transition of the stored native silk molecules is irreversible, environmentally sound and remarkably energy efficient. The process seemingly relies on a self-assembling, fibrillation process. Here we test this hypothesis by biomimetically spinning a native-based silk feedstock, extracted by custom processes, into silk fibres that equal their natural models’ mechanical properties. Importantly, these filaments, which featured cross-section morphologies ranged from large crescent-like to small ribbon-like shapes, also had the slender cross-sectional areas of native fibres and their hierarchical nanofibrillar structures. The modulation of the post-draw conditions directly affected mechanical properties, correlated with the extent of fibre crystallinity, i.e. degree of molecular order. We believe our study contributes significantly to the understanding and development of artificial silks by demonstrating successful biomimetic spinning relies on appropriately designed feedstock properties. In addition, our study provides inspiration for low-energy routes to novel synthetic polymers.


2018 ◽  
Vol 24 (1) ◽  
pp. 17-28 ◽  
Author(s):  
Zhangchuan Peng ◽  
Chun Liu ◽  
Lin Zhang ◽  
Wei Li ◽  
Wenbo Hu ◽  
...  

AbstractOne of the critical prerequisites for accurately measuring the mechanical properties of profiled fibers is the precise determination of their cross-sectional areas (CSAs). In this study, a new method is established for determining a single profiled fibers’ CSA based on the frozen section method and digital photo, pixel-ratio method (FS-DP). FS-DP is used to obtain a transverse section of a fiber, by acquiring an image of the cross section using optical microscopy or scanning electron microscopy, and then calculating the CSA using Photoshop. Using FS-DP, it was found that the shape of a fiber of silk changes little in a range of 50 μm, but varies considerably over a range of 1 m, while the CSA of cocoon silk (900 m) first increases and then decreases. Mechanical property tests showed that the elongation, strength, elastic modulus, and toughness values of the cocoon silk are consistent with those reported previously. Additionally, FS-DP was also used to observe other profiled fibers. The application tests indicated that FS-DP can be used to quickly and accurately obtain the CSA of a single profiled fiber, and that it is suitable for the large-scale determination and analysis of the mechanical properties of profiled fibers.


2016 ◽  
Vol 7 ◽  
pp. 278-283 ◽  
Author(s):  
Liga Jasulaneca ◽  
Raimonds Meija ◽  
Alexander I Livshits ◽  
Juris Prikulis ◽  
Subhajit Biswas ◽  
...  

In this study we address the mechanical properties of Sb2S3 nanowires and determine their Young’s modulus using in situ electric-field-induced mechanical resonance and static bending tests on individual Sb2S3 nanowires with cross-sectional areas ranging from 1.1·104 nm2 to 7.8·104 nm2. Mutually orthogonal resonances are observed and their origin explained by asymmetric cross section of nanowires. The results obtained from the two methods are consistent and show that nanowires exhibit Young’s moduli comparable to the value for macroscopic material. An increasing trend of measured values of Young’s modulus is observed for smaller thickness samples.


Sign in / Sign up

Export Citation Format

Share Document