Design of impact angle control guidance laws via high-performance sliding mode control

Author(s):  
Chang-Hun Lee ◽  
Tae-Hun Kim ◽  
Min-Jea Tahk
Author(s):  
Shashi Ranjan Kumar ◽  
Debasish Ghose

This paper proposes three-dimensional impact angle control guidance laws based on a sliding mode control technique. Unlike the usual approach of decoupling the engagement dynamics into two mutually orthogonal two-dimensional planes, the guidance laws are derived using coupled engagement dynamics. By using this approach, the control effort required to achieve the objective reduces and the performance of the guidance law is improved. The derivations of guidance laws are done using both conventional as well as nonsingular terminal sliding mode control, which guarantees asymptotic and finite time convergence, respectively, to the desired impact angle. In order to derive the guidance laws, multi-dimensional switching surfaces are used. The stability of the system, with selected switching surfaces, is demonstrated using Lyapunov stability theory. Numerical simulation results are presented to validate the proposed guidance laws for constant speed, as well as a realistic interceptor model with given aerodynamic properties. The simulations show the advantage of using coupled dynamics. The robustness of the proposed guidance laws, with respect to the interceptor’s system lag, is also investigated.


2014 ◽  
Vol 971-973 ◽  
pp. 714-717 ◽  
Author(s):  
Xiang Shi ◽  
Zhe Xu ◽  
Qing Yi He ◽  
Ka Tian

To control wheeled inverted pendulum is a good way to test all kinds of theories of control. The control law is designed, and it based on the collaborative simulation of MATLAB and ADAMS is used to control wheeled inverted pendulum. Then, with own design of hardware and software of control system, sliding mode control is used to wheeled inverted pendulum, and the experimental results of it indicate short adjusting time, the small overshoot and high performance.


2018 ◽  
Vol 10 (9) ◽  
pp. 168781401879574 ◽  
Author(s):  
Wei Yuan ◽  
Guoqin Gao

The trajectory-tracking performance of the automobile electro-coating conveying mechanism is severely interrupted by highly nonlinear crossing couplings, unmodeled dynamics, parameter variation, friction, and unknown external disturbance. In this article, a sliding mode control with a nonlinear disturbance observer is proposed for high-accuracy motion control of the conveying mechanism. The nonlinear disturbance observer is designed to estimate not only the internal/external disturbance but also the model uncertainties. Based on the output of the nonlinear disturbance observer, a sliding mode control approach is designed for the hybrid series–parallel mechanism. Then, the stability of the closed-loop system is proved by means of a Lyapunov analysis. Finally, simulations with typical desired trajectory are presented to demonstrate the high performance of the proposed composite control scheme.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Zhe Yang ◽  
Hui Wang ◽  
Defu Lin ◽  
Luyao Zang

A guidance problem for impact time and angle control applicable to cooperative attack is considered based on the sliding mode control. In order to satisfy the impact angle constraint, a line-of-sight rate polynomial function is introduced with four tuning parameters. And the time-to-go derivative with respect to a downrange orientation is derived to minimize the impact time error. Then the sliding mode control surface with impact time and angle constraints is constructed using nonlinear engagement dynamics to provide an accurate solution. The proposed guidance law is easily extended to a nonmaneuvering target using the predicted interception point. Numerical simulations are performed to verify the effectiveness of the proposed guidance law for different engagement scenarios.


Sign in / Sign up

Export Citation Format

Share Document