Flutter analysis of high-aspect-ratio wings based on a third-order nonlinear beam model

Author(s):  
Hamid Reza Ovesy ◽  
Amir Nikou ◽  
Hossein Shahverdi
2019 ◽  
Vol 56 (4) ◽  
pp. 1455-1470 ◽  
Author(s):  
D. E. Calderon ◽  
J. E. Cooper ◽  
M. Lowenberg ◽  
S. A. Neild ◽  
E. B. Coetzee

2012 ◽  
Vol 189 ◽  
pp. 306-311 ◽  
Author(s):  
Qing Guo ◽  
Bi Feng Song

High altitude and long endurance (HALE) vehicle always adopt straight or swept configuration, which leads to the problem that the wings of UAV have high aspect ratio and are very flexible. This kind of flexible wing exhibits large deformation when aerodynamic forces are loaded on them and the structural nonlinearity should be considered. So the dynamic and flutter characteristics will be changed. In the engineering applications, the effects of structural geometric nonlinearities on the air vehicle design are the most concerns of aeroelasticity before a systematic flutter analysis for the air vehicle. because the solution for nonlinear flutter speed based on the CFD-CSD method is complex and time consuming. In this paper, we propose a simple and efficient approach that can analyze the effect of structural geometric nonlinearities on the flutter characteristics of high aspect ratio wing quickly. And a straight wing and a straight-swept wing are analyzed to verify the feasibility and efficiency of the proposed method. It is found that the effect of structural geometric nonlinearities has a strong effect on the flutter characteristic of the straight wing, but is weak on the straight-swept wing. And finally the impact of swept angle on the dynamic and flutter characteristics of straight-swept wing is also discussed.


2008 ◽  
Vol 15 (3-4) ◽  
pp. 325-333 ◽  
Author(s):  
Chang Chuan Xie ◽  
Jia Zhen Leng ◽  
Chao Yang

A composite high-aspect-ratio wing of a high-altitude long-endurance (HALE) aircraft was modeled with FEM by MSC/NASTRAN, and the nonlinear static equilibrium state is calculated under design load with follower force effect, but without load redistribution. Assuming the little vibration amplitude of the wing around the static equilibrium state, the system is linearized and the natural frequencies and mode shapes of the deformed structure are obtained. Planar doublet lattice method is used to calculate unsteady aerodynamics in frequency domain ignoring the bending effect of the deflected wing. And then, the aeroelastic stability analysis of the system under a given load condition is successively carried out. Comparing with the linear results, the nonlinear displacement of the wing tip is higher. The results indicate that the critical nonlinear flutter is of the flap/chordwise bending type because of the chordwise bending having quite a large torsion component, with low critical speed and slowly growing damping, which dose not appear in the linear analysis. Furthermore, it is shown that the variation of the nonlinear flutter speed depends on the scale of the load and on the chordwise bending frequency. The research work indicates that, for the very flexible HALE aircraft, the nonlinear aeroelastic stability is very important, and should be considered in the design progress. Using present FEM software as the structure solver (e.g. MSC/NASTRAN), and the unsteady aerodynamic code, the nonlinear aeroelastic stability margin of a complex system other than a simple beam model can be determined.


2014 ◽  
Vol 351 (8) ◽  
pp. 4230-4250 ◽  
Author(s):  
A.V. Balakrishnan ◽  
Amjad M. Tuffaha ◽  
Iylene Patino ◽  
Oleg Melnikov

2014 ◽  
Vol 556-562 ◽  
pp. 4329-4332
Author(s):  
Yan Ping Xiao ◽  
Yi Ren Yang ◽  
Peng Li

In this paper structural equations of motion based on nonlinear beam theory and the unsteady aerodynamic forces are gained to study the effects of geometric nonlinearity on the aerodynamic response of high-aspect-ratio wings. Then the Galerkin’s method is used to discretize the equations of motion. The results of HALE wing show good agreement with references. And other results investigate the effects of geometric structural nonlinearity on the response of a wing. Also the complex changes of the limit-cycle oscillation with speed increasing is carefully studied.


Author(s):  
F. Bakhtiari-Nejad ◽  
A. H. Modarres ◽  
E. H. Dowell ◽  
H. Shahverdi

In this study, analysis and results of linear and nonlinear aeroelastic of a cantilever beam subjected to the airflow as a model of a high aspect ratio wing are presented. A third-order nonlinear beam model is used as structural model to take into account the effects of geometric structural nonlinearities. In order to model aerodynamic loads, Wagner state-space model has been used. Galerkin method is implemented to solve dynamic perturbation equations about a nonlinear static equilibrium state. The small perturbation flutter boundary is determined by these perturbation equations. The effect of geometric structural nonlinearity of the beam model on the flutter behavior is significant. As it is observed the system’s response to upper speed of flutter goes to limit cycle oscillations and also the oscillations lose periodicity and become chaotic.


2021 ◽  
pp. 1-41
Author(s):  
Keisuke Otsuka ◽  
Yinan Wang ◽  
Kanjuro Makihara

Abstract Next-generation civil aircraft and atmospheric satellites will have high-aspect-ratio wings. Such a design necessitates successive analysis of static, frequency, and time-domain dynamic responses based on a three-dimensional nonlinear beam model. In this study, a new successive-analysis framework based on an absolute nodal coordinate formulation with mean artificial strains (ANCF-MAS) is developed. While retaining the advantages of other 3D ANCF approaches, such as constancy of the mass matrix and absence of velocity-dependent terms, ANCF-MAS uses the elastic force of the mean artificial strains to remove cross-sectional deformations that cause locking problems. The equation becomes a differential equation with an easily linearized elastic force that enables not only static and dynamic analyses but also frequency analysis using standard eigenvalue solvers. The solutions converge to the analytical frequencies without suffering from locking problems. A proposed successive-analysis method with model-order reduction reveals that the frequencies vary with the nonlinear static deformation because of the 3D deformation coupling. This reduced-order model agrees well with nonlinear models even when the wing experiences a large nonlinear dynamic deformation.


2014 ◽  
Vol 912-914 ◽  
pp. 907-910 ◽  
Author(s):  
Jun Xu ◽  
Xiao Ping Ma

Limit cycle flutter analysis of a high-aspect-ratiowing with an external store is presented. The concentrated store mass iscombined into the governing equations which are obtained using the extendedHamilton’s principle. The high-aspect-ratio wing structural model, which alsoconsiders the in-plane bending motion, is used. Three possible nonlinearitiesare considered including structural nonlinearities, aerodynamic nonlinearities,and store nonlinearities. Time simulation and bifurcation diagrams areperformed to analysis systems with three nonlinearities.


Sign in / Sign up

Export Citation Format

Share Document