Flutter of a two-dimensional wing with asymmetry at low Mach numbers

Author(s):  
Song Shao ◽  
Qing-Hua Zhu ◽  
Yu-Xin Huang ◽  
Cheng-Lin Zhang ◽  
Xian-Ping Ni
Keyword(s):  
Author(s):  
M. M. Al-Mudhafar ◽  
M. Ilyas ◽  
F. S. Bhinder

The results of an experimental study on the influence of severely distorted velocity profiles on the performance of a straight two-dimensional diffuser are reported. The data cover entry Mach numbers ranging from 0.1 to 0.6 and several inlet distortion levels. The pressure recovery progressively deteriorates as the inlet velocity is distorted.


Aerodynamics ◽  
2021 ◽  
Author(s):  
Vladimir Frolov

The paper presents the calculated results obtained by the author for critical Mach numbers of the flow around two-dimensional and axisymmetric bodies. Although the previously proposed method was applied by the author for two media, air and water, this chapter is devoted only to air. The main goal of the work is to show the high accuracy of the method. For this purpose, the work presents numerous comparisons with the data of other authors. This method showed acceptable accuracy in comparison with the Dorodnitsyn method of integral relations and other methods. In the method under consideration, the parameters of the compressible flow are calculated from the parameters of the flow of an incompressible fluid up to the Mach number of the incoming flow equal to the critical Mach number. This method does not depend on the means determination parameters of the incompressible flow. The calculation in software Flow Simulation was shown that the viscosity factor does not affect the value critical Mach number. It was found that with an increase in the relative thickness of the body, the value of the critical Mach number decreases. It was also found that the value of the critical Mach number for the two-dimensional case is always less than for the axisymmetric case for bodies with the same cross-section.


1974 ◽  
Vol 96 (1) ◽  
pp. 11-15 ◽  
Author(s):  
C. R. Smith ◽  
S. J. Kline

A study of flow behavior of transitory stall in two-dimensional diffusers at low Mach numbers is reported. The changes in flow patterns from stall inception to full-stall are described; the geometries for maximum fluctuations are located. The mean times and distribution of stall build-up and wash-out periods are given for a series of units of varying total angle. The mean times are found to scale on total stall volume, and a nondimensional correlation of stall period is given. The distribution of stall periods, for random inlet fluctuations, is found to be broad and strongly skewed toward lower periods. Comparable results are found in water for R∼104 and in air at R∼105. A further series of tests with periodic inlet disturbances indicates that the stall behavior is modified strongly when the pulsing period is 0.5 to 1.0 times the natuarl mean period, but not otherwise. Details of flow patterns and blockage are summarized.


1957 ◽  
Vol 8 (2) ◽  
pp. 123-144 ◽  
Author(s):  
R. E. Meyer

SummaryThe drag in two-dimensional flow is expressed in terms of the distributions of static and stagnation pressures along a traverse line downstream of the aerofoil. Sources of error are discussed with regard to their effect on the accuracy of drag measurement in small tunnels at medium Mach numbers.


2002 ◽  
Vol 455 ◽  
pp. 315-346 ◽  
Author(s):  
CLARENCE W. ROWLEY ◽  
TIM COLONIUS ◽  
AMIT J. BASU

Numerical simulations are used to investigate the resonant instabilities in two-dimensional flow past an open cavity. The compressible Navier–Stokes equations are solved directly (no turbulence model) for cavities with laminar boundary layers upstream. The computational domain is large enough to directly resolve a portion of the radiated acoustic field, which is shown to be in good visual agreement with schlieren photographs from experiments at several different Mach numbers. The results show a transition from a shear-layer mode, primarily for shorter cavities and lower Mach numbers, to a wake mode for longer cavities and higher Mach numbers. The shear-layer mode is characterized well by the acoustic feedback process described by Rossiter (1964), and disturbances in the shear layer compare well with predictions based on linear stability analysis of the Kelvin–Helmholtz mode. The wake mode is characterized instead by a large-scale vortex shedding with Strouhal number independent of Mach number. The wake mode oscillation is similar in many ways to that reported by Gharib & Roshko (1987) for incompressible flow with a laminar upstream boundary layer. Transition to wake mode occurs as the length and/or depth of the cavity becomes large compared to the upstream boundary-layer thickness, or as the Mach and/or Reynolds numbers are raised. Under these conditions, it is shown that the Kelvin–Helmholtz instability grows to sufficient strength that a strong recirculating flow is induced in the cavity. The resulting mean flow is similar to wake profiles that are absolutely unstable, and absolute instability may provide an explanation of the hydrodynamic feedback mechanism that leads to wake mode. Predictive criteria for the onset of shear-layer oscillations (from steady flow) and for the transition to wake mode are developed based on linear theory for amplification rates in the shear layer, and a simple model for the acoustic efficiency of edge scattering.


Sign in / Sign up

Export Citation Format

Share Document