Explicit dynamic formulation to demonstrate compliance against quasi-static aircraft seat certification loads (CS25.561) – Part II: Influence of body blocks

Author(s):  
Kevin Hughes ◽  
Omkar Gulavani ◽  
Tom De Vuyst ◽  
Rade Vignjevic
2009 ◽  
Vol 23 (12-13) ◽  
pp. 1617-1640
Author(s):  
Yongjie Zhao ◽  
Feng Gao ◽  
Xianchao Zhao ◽  
Nengsheng Bao

2012 ◽  
Vol 204-208 ◽  
pp. 4455-4459 ◽  
Author(s):  
Liu Hong Chang ◽  
Chang Bo Jiang ◽  
Man Jun Liao ◽  
Xiong Xiao

The explicit dynamic finite element theory is applied on the collision of ships with buoys for computer simulation. Using ANSYS/LS-DYNA finite element analysis software, the numerical simulation of the collision between the ton ship and the buoy with different structures and impact points. The collision force, deformation, displacement parameters and the weak impact points of a buoy are obtained. Based on the numerical simulation results, analysis of buoys and structural collision damages in anti-collision features are discussed, and several theoretical sugestions in anti-collision for the design of buoy are provided.


2014 ◽  
Vol 931-932 ◽  
pp. 994-998
Author(s):  
Rangsan Wannapop ◽  
Thira Jearsiripongkul ◽  
Thawatchai Boonluang

This research represents a design and analysis of Automatic loading copper wire machine for the actuator arm (ALCM). The process of copper wire placement on a single actuator arm type compensates human workers. In this research, copper wire placement set is made as a 3D model by computer program before undergoes arrangement analysis via explicit dynamic finite element method to study a suitable speed for copper wire placing. It is considered by characteristics of copper wire after placed and failures occurred during the process that will define suitable speed of motor rotation. The suitable speed is corresponding to copper wire characteristic as preferred, prevent copper wire fracture and time reduction compare to human work.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Jeong-Hoon Song ◽  
Thomas Menouillard ◽  
Alireza Tabarraei

A numerical method for dynamic failure analysis through the phantom node method is further developed. A distinct feature of this method is the use of the phantom nodes with a newly developed correction force scheme. Through this improved approach, fracture energy can be smoothly dissipated during dynamic failure processes without emanating noisy artifact stress waves. This method is implemented to the standard 4-node quadrilateral finite element; a single quadrature rule is employed with an hourglass control scheme in order to decrease computational cost and circumvent difficulties associated with the subdomain integration schemes for cracked elements. The effectiveness and robustness of this method are demonstrated with several numerical examples. In these examples, we showed the effectiveness of the described correction force scheme along with the applicability of this method to an interesting class of structural dynamic failure problems.


2014 ◽  
Vol 687-691 ◽  
pp. 610-615 ◽  
Author(s):  
Hui Liu ◽  
Li Wen Guan

High-dynamic flight simulator (HDFS), using a centrifuge as its motion base, is a machine utilized for simulating the acceleration environment associated with modern advanced tactical aircrafts. This paper models the HDFS as a robotic system with three rotational degrees of freedom. The forward and inverse dynamic formulations are carried out by the recursive Newton-Euler approach. The driving torques acting on the joints are determined on the basis of the inverse dynamic formulation. The formulation has been implemented in two numerical simulation examples, which are used for calculating the maximum torques of actuators and simulating the time-histories of kinematic and dynamic parameters of pure trapezoid Gz-load command profiles, respectively. The simulation results can be applied to the design of the control system. The dynamic modeling approach presented in this paper can also be generalized to some similar devices.


Sign in / Sign up

Export Citation Format

Share Document