Active control of multifrequency helicopter vibrations using discrete model predictive sliding mode control

Author(s):  
Yang Lu ◽  
Xunjun Ma
Author(s):  
Liming Dai ◽  
Lin Sun

An active control strategy is developed for nonlinear vibration control of an axially translating beam applied in engineering field. The control strategy is established on the basis of Fuzzy Sliding Mode Control. The nonlinear model governing the beam system is described with a six-degree nonlinear dynamic system. Corresponding to the multi-degree nonlinear system, the active control strategy is developed. The proposed control strategy is proven to be effective in controlling and stabilizing the nonlinear motions especially chaotic motion of the beam.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Yu Feng ◽  
Zhouchao Wei ◽  
Uğur Erkin Kocamaz ◽  
Akif Akgül ◽  
Irene Moroz

We introduce and investigate a four-dimensional hidden hyperchaotic system without equilibria, which is obtained by augmenting the three-dimensional self-exciting homopolar disc dynamo due to Moffatt with an additional control variable. Synchronization of two such coupled disc dynamo models is investigated by active control and sliding mode control methods. Numerical integrations show that sliding mode control provides a better synchronization in time but causes chattering. The solution is obtained by switching to active control when the synchronization errors become very small. In addition, the electronic circuit of the four-dimensional hyperchaotic system has been realized in ORCAD-PSpice and on the oscilloscope by amplitude values, verifying the results from the numerical experiments.


2015 ◽  
Vol 23 (8) ◽  
pp. 1334-1353 ◽  
Author(s):  
Sy Dzung Nguyen ◽  
Quoc Hung Nguyen

This paper focuses on building a controller for active suspension system of train cars in the case that the sprung mass and model error are uncertainty parameters. The sprung mass is always varied due to many reasons such as changing of the passengers and load or impacting of wind on the operating train while an unknown difference between the suspension model used for survey and the real suspension system also always exists. The controller is built based on an adaptive neuro-fuzzy inference system (ANFIS), sliding mode control, uncertainty observer (NFSmUoC) and a magnetorheological damper (MRD) which can be seen as an actuator for applying active force. A nonlinear uncertainty observer (NUO), a sliding mode controller (SMC) together with an inverse model of the MRD are designed in order to calculate the current value by which the MRD creates the required active control force u( t). An ANFIS and measured MR-damper-dynamic-response data sets are used to identify the MRD as an inverse MRD model (ANFIS-I-MRD). Based on dynamic response of the suspension, firstly the active control force u( t) is calculated by NUO and SMC, in which the impact of the uncertainty load on the system is estimated by the NUO. The ANFIS-I-MRD is then used to estimate applied current for the MRD in order to create the calculated active control force to control vertical vibration status of the train cars. Simulation surveys are carried out to evaluate the effectiveness of the proposed method.


2011 ◽  
Vol 7 (1) ◽  
pp. 19-24
Author(s):  
Aamir Hashim Obeid Ahmed ◽  
Martino O. Ajangnay ◽  
Shamboul A. Mohamed ◽  
Matthew W. Dunnigan

Sign in / Sign up

Export Citation Format

Share Document