Semi-active Control of Structures Using Magnetorheological Elastomer-Based Seismic Isolators and Sliding Mode Control

Author(s):  
K. Balamonica ◽  
K. Sathish Kumar ◽  
N. Gopalakrishnan
Author(s):  
Liming Dai ◽  
Lin Sun

An active control strategy is developed for nonlinear vibration control of an axially translating beam applied in engineering field. The control strategy is established on the basis of Fuzzy Sliding Mode Control. The nonlinear model governing the beam system is described with a six-degree nonlinear dynamic system. Corresponding to the multi-degree nonlinear system, the active control strategy is developed. The proposed control strategy is proven to be effective in controlling and stabilizing the nonlinear motions especially chaotic motion of the beam.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Yu Feng ◽  
Zhouchao Wei ◽  
Uğur Erkin Kocamaz ◽  
Akif Akgül ◽  
Irene Moroz

We introduce and investigate a four-dimensional hidden hyperchaotic system without equilibria, which is obtained by augmenting the three-dimensional self-exciting homopolar disc dynamo due to Moffatt with an additional control variable. Synchronization of two such coupled disc dynamo models is investigated by active control and sliding mode control methods. Numerical integrations show that sliding mode control provides a better synchronization in time but causes chattering. The solution is obtained by switching to active control when the synchronization errors become very small. In addition, the electronic circuit of the four-dimensional hyperchaotic system has been realized in ORCAD-PSpice and on the oscilloscope by amplitude values, verifying the results from the numerical experiments.


2021 ◽  
Vol 11 (23) ◽  
pp. 11409
Author(s):  
Wael A. Altabey ◽  
Mohammad Noori ◽  
Zele Li ◽  
Ying Zhao ◽  
Seyed Bahram Beheshti Aval ◽  
...  

Magnetorheological elastomeric (MRE) material is a novel type of material that can adaptively change the rheological property rapidly, continuously, and reversibly when subjected to real-time external magnetic field. These new type of MRE materials can be developed by employing various schemes, for instance by mixing carbon nanotubes or acetone contents during the curing process which produces functionalized multiwall carbon nanotubes (MWCNTs). In order to study the mechanical and magnetic effects of this material, for potential application in seismic isolation, in this paper, different mathematical models of magnetorheological elastomers are analyzed and modified based on the reported studies on traditional magnetorheological elastomer. In this regard, a new feature identification method, via utilizing curvelet analysis, is proposed to make a multi-scale constituent analysis and subsequently a comparison between magnetorheological elastomer nanocomposite and traditional magnetorheological elastomers in a microscopic level. Furthermore, by using this “smart” material as the laminated core structure of an adaptive base isolation system, magnetic circuit analysis is numerically conducted for both complete and incomplete designs. Magnetic distribution of different laminated magnetorheological layers is discussed when the isolator is under compressive preloading and lateral shear loading. For a proof of concept study, a scaled building structure is established with the proposed isolation device. The dynamic performance of this isolated structure is analyzed by using a newly developed reaching law sliding mode control and Radial Basis Function (RBF) adaptive sliding mode control schemes. Transmissibility of the structural system is evaluated to assess its adaptability, controllability and nonlinearity. As the findings in this study show, it is promising that the structure can achieve its optimal and adaptive performance by designing an isolator with this adaptive material whose magnetic and mechanical properties are functionally enhanced as compared with traditional isolation devices. The adaptive control algorithm presented in this research can transiently suppress and protect the structure against non-stationary disturbances in the real time.


2015 ◽  
Vol 23 (8) ◽  
pp. 1334-1353 ◽  
Author(s):  
Sy Dzung Nguyen ◽  
Quoc Hung Nguyen

This paper focuses on building a controller for active suspension system of train cars in the case that the sprung mass and model error are uncertainty parameters. The sprung mass is always varied due to many reasons such as changing of the passengers and load or impacting of wind on the operating train while an unknown difference between the suspension model used for survey and the real suspension system also always exists. The controller is built based on an adaptive neuro-fuzzy inference system (ANFIS), sliding mode control, uncertainty observer (NFSmUoC) and a magnetorheological damper (MRD) which can be seen as an actuator for applying active force. A nonlinear uncertainty observer (NUO), a sliding mode controller (SMC) together with an inverse model of the MRD are designed in order to calculate the current value by which the MRD creates the required active control force u( t). An ANFIS and measured MR-damper-dynamic-response data sets are used to identify the MRD as an inverse MRD model (ANFIS-I-MRD). Based on dynamic response of the suspension, firstly the active control force u( t) is calculated by NUO and SMC, in which the impact of the uncertainty load on the system is estimated by the NUO. The ANFIS-I-MRD is then used to estimate applied current for the MRD in order to create the calculated active control force to control vertical vibration status of the train cars. Simulation surveys are carried out to evaluate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document