Integrated guidance and control path following and dynamic control allocation for a stratospheric airship with redundant control systems

Author(s):  
Zewei Zheng ◽  
Lisha Liu ◽  
Ming Zhu
2019 ◽  
Vol 2019 ◽  
pp. 1-17
Author(s):  
Xiang Liu ◽  
Xiaogeng Liang

In this study, a novel integrated guidance and control (IGC) algorithm based on an IGC method and the asymmetric barrier Lyapunov function is designed; this algorithm is designed for the interceptor missile which uses a direct-force/aerodynamic-force control scheme. First, by considering the coupling between the pitch and the yaw channels of the interceptor missile, an IGC model of these channels is established, and a time-varying gain extended state observer (TVGESO) is designed to estimate unknown interferences in the model. Second, by considering the system output constraint problem, an asymmetric barrier Lyapunov function and a dynamic surface sliding-mode control method are employed to design the control law of the pitch and yaw channels to obtain the desired control moments. Finally, in light of redundancy in such actuators as aerodynamic rudders and jet devices, a dynamic control allocation algorithm is designed to assign the desired control moments to the actuators. Moreover, the results of simulations show that the IGC algorithm based on the asymmetric barrier Lyapunov function for the interceptor missile allows the outputs to meet the constraints and improves the stability of the control system of the interceptor missile.


2015 ◽  
Vol 40 ◽  
pp. 182-190 ◽  
Author(s):  
Eleonora Saggini ◽  
Enrica Zereik ◽  
Marco Bibuli ◽  
Andrea Ranieri ◽  
Gabriele Bruzzone ◽  
...  

2005 ◽  
Vol 13 (4) ◽  
pp. 329-356 ◽  
Author(s):  
Christoph Meier ◽  
Jörn Jakobi ◽  
Paul Adamson ◽  
Sandra Lozito ◽  
Lynne Martin

Author(s):  
Bin Zhao ◽  
Zhenxin Feng ◽  
Jianguo Guo

The problem of the integrated guidance and control (IGC) design for strap-down missile with the field-of-view (FOV) constraint is solved by using the integral barrier Lyapunov function (iBLF) and the sliding mode control theory. Firstly, the nonlinear and uncertainty state equation with non-strict feedback form for IGC design is derived by using the strap-down decoupling strategy. Secondly, a novel adaptive finite time disturbance observer is proposed to estimate the uncertainties based on an improved adaptive gain super twisting algorithm. Thirdly, the special time-varying sliding variable is designed and the iBLF is employed to handle the problem of FOV constraint. Theoretical derivation and simulation show that the IGC system is globally uniformly ultimately bounded and the FOV angle constraint is also guaranteed not only during the reaching phase but also during the sliding mode phase.


2011 ◽  
Vol 143-144 ◽  
pp. 341-345
Author(s):  
Zeng Xian Geng ◽  
Yi Fei Zhao ◽  
Zhi Jian Ye

According the present complicated and lacks of high-leveled automation ground operation supporting system, based on the concept of ICAO'S A-SMGCS (advanced surface movement guidance and control systems) and the existed facilities of the airport, this paper focuses on the research of a new ground operation supporting system in accordance with A-SMGCS, including the basis system hardware, the surveillance ground monitoring subsystem and the lighting subsystem, etc. The system is capable of not only detecting and predicting the traffic conflicts on the ground but also providing solutions and suggestions. Meanwhile the system can help controllers to arrange and use the airport resources so as to reduce the ground holding time and delay time.


Sign in / Sign up

Export Citation Format

Share Document