Study on lift enhancement of a flapping rotary wing by a bore-hole design

Author(s):  
Long Chen ◽  
Yanlai Zhang ◽  
Jianghao Wu

A novel design of a micro air vehicle with flapping rotary wings was recently proposed. In this paper, the investigation is focused on aerodynamic enhancement of a bore-hole and an elastic cover added onto an intact flapping rotary wing. The aerodynamic force and the pitching motion of the perforated wing are both acquired in experiments. In comparison with an intact wing, a typical perforated wing shows a significant decrement in negative lift and thus a higher mean lift. As a supporting process, the computational fluid dynamics method is then employed to analyze the flow around the wing and the hole, and thereby make clear the underlying physical mechanism. It is found the hole opens due to the cover deflection in a passive manner and produces a secondary starting vortex on the wing lower surface of the cover during upstrokes. Together with the tip vortex around the lateral edges of the cover, the resulting vortex significantly reduces the magnitude of the negative lift, and thus explains the mean-lift enhancement in a flapping cycle. Additionally, the mean-lift enhancement correlates with the geometric parameters of the hole. An increment up to 40% in maximum mean lift is identified for a perforated wing in comparison with an intact wing. These results indicate that a bore-hole design could be a promising approach to enhance the aerodynamic lift of a flapping rotary wing.

2012 ◽  
Vol 232 ◽  
pp. 189-193 ◽  
Author(s):  
Jiang Hao Wu ◽  
Chao Zhou ◽  
Yan Lai Zhang

A novel design in micro-air-vehicle using flapping rotary wings with different wing spanwise length and area is proposed. With the wings flapping, produced thrust makes the wings rotation. Furthermore, lift force from rotary wings increases and overcomes the MAV weight. On the basis of this principle, a mechanical model is made and sample experiments of averaged lift measurement in different wing length and area and angle of attack are executed. It is shown that the maximum averaged lift produced by micro flapping rotary wings can reach to 80mN approximately close to the weight of MAV.


2015 ◽  
Vol 3 (1) ◽  
pp. 18-38 ◽  
Author(s):  
Hoang Vu Phan ◽  
Quang-Tri Truong ◽  
Hoon-Cheol Park

Purpose – The purpose of this paper is to demonstrate the uncontrolled vertical takeoff of an insect-mimicking flapping-wing micro air vehicle (FW-MAV) of 12.5 cm wing span with a body weight of 7.36 g after installing batteries and power control. Design/methodology/approach – The forces were measured using a load cell and estimated by the unsteady blade element theory (UBET), which is based on full three-dimensional wing kinematics. In addition, the mean aerodynamic force center (AC) was determined based on the UBET calculations using the measured wing kinematics. Findings – The wing flapping frequency can reach to 43 Hz at the flapping angle of 150°. By flapping wings at a frequency of 34 Hz, the FW-MAV can produce enough thrust to over its own weight. For this condition, the difference between the estimated and average measured vertical forces was about 7.3 percent with respect to the estimated force. All parts for the FW-MAV were integrated such that the distance between the mean AC and the center of gravity is close to zero. In this manner, pitching moment generation was prevented to facilitate stable vertical takeoff. An uncontrolled takeoff test successfully demonstrated that the FW-MAV possesses initial pitching stability for takeoff. Originality/value – This work has successfully demonstrated an insect-mimicking flapping-wing MAV that can stably takeoff with initial stability.


2010 ◽  
Vol 29-32 ◽  
pp. 1301-1306
Author(s):  
Jin Xu ◽  
Liang Chen ◽  
Wei Sun

As a new conceptual micro air vehicle, biomimetic flapping-wing robots have the advantages of small sizes, light weights, high maneuverability, and perfect aerodynamic performance. Flapping-wing robot can produce more effective aerodynamic force than traditional fixed-wing or rotary-wing aircrafts. Unsteady aerodynamics at low Reynolds number is the main theory applied to micro air vehicle analysis. In this paper, the flight parameters for a flapping-wing robot are designed with geometric similarity firstly. Then an improved aerodynamic model with optimized parameters is established. Lastly, some simulation and analysis are presented to illustrate and verify the feasibility and effectiveness of the models.


2021 ◽  
Vol 13 (7) ◽  
pp. 168781402110349
Author(s):  
Huiqiang Guo ◽  
Mingzhe Li ◽  
Pengfei Sun ◽  
Changfeng Zhao ◽  
Wenjie Zuo ◽  
...  

Rotary-wing unmanned aerial vehicles (UAVs) are widespread in both the military and civilian applications. However, there are still some problems for the UAV design such as the long design period, high manufacturing cost, and difficulty in maintenance. Therefore, this paper proposes a novel design method to obtain a lightweight and maintainable UAV frame from configurable design to detailed design. First, configurable design is implemented to determine the initial design domain of the UAV frame. Second, topology optimization method based on inertia relief theory is used to transform the initial geometric model into the UAV frame structure. Third, process design is considered to improve the manufacturability and maintainability of the UAV frame. Finally, dynamic drop test is used to validate the crashworthiness of the UAV frame. Therefore, a lightweight UAV frame structure composed of thin-walled parts can be obtained and the design period can be greatly reduced via the proposed method.


2002 ◽  
Vol 205 (1) ◽  
pp. 55-70 ◽  
Author(s):  
Mao Sun ◽  
Jian Tang

SUMMARY A computational fluid-dynamic analysis was conducted to study the unsteady aerodynamics of a model fruit fly wing. The wing performs an idealized flapping motion that emulates the wing motion of a fruit fly in normal hovering flight. The Navier–Stokes equations are solved numerically. The solution provides the flow and pressure fields, from which the aerodynamic forces and vorticity wake structure are obtained. Insights into the unsteady aerodynamic force generation process are gained from the force and flow-structure information. Considerable lift can be produced when the majority of the wing rotation is conducted near the end of a stroke or wing rotation precedes stroke reversal (rotation advanced), and the mean lift coefficient can be more than twice the quasi-steady value. Three mechanisms are responsible for the large lift: the rapid acceleration of the wing at the beginning of a stroke, the absence of stall during the stroke and the fast pitching-up rotation of the wing near the end of the stroke. When half the wing rotation is conducted near the end of a stroke and half at the beginning of the next stroke (symmetrical rotation), the lift at the beginning and near the end of a stroke becomes smaller because the effects of the first and third mechanisms above are reduced. The mean lift coefficient is smaller than that of the rotation-advanced case, but is still 80 % larger than the quasi-steady value. When the majority of the rotation is delayed until the beginning of the next stroke (rotation delayed), the lift at the beginning and near the end of a stroke becomes very small or even negative because the effect of the first mechanism above is cancelled and the third mechanism does not apply in this case. The mean lift coefficient is much smaller than in the other two cases.


2017 ◽  
Vol 813 ◽  
pp. 110-126 ◽  
Author(s):  
Adam C. DeVoria ◽  
Kamran Mohseni

High-incidence lift generation via flow reattachment is studied. Different reattachment mechanisms are distinguished, with dynamic manoeuvres and tip vortex downwash being separate mechanisms. We focus on the latter mechanism, which is strictly available to finite wings, and isolate it by considering steadily translating wings. The tip vortex downwash provides a smoother merging of the flow at the trailing edge, thus assisting in establishing a Kutta condition there. This decreases the strength/amount of vorticity shed from the trailing edge, and in turn maintains an effective bound circulation resulting in continued lift generation at high angles of attack. Just below the static lift-stall angle of attack, strong vorticity is shed at the trailing edge indicating an increasingly intermittent reattachment/detachment of the instantaneous flow at mid-span. Above this incidence, the trailing-edge shear layer increases in strength/size representing a negative contribution to the lift and leads to stall. Lastly, we show that the mean-flow topology is equivalent to a vortex pair regardless of the particular physical flow configuration.


2015 ◽  
Vol 12 (104) ◽  
pp. 20141367 ◽  
Author(s):  
R. L. Harne ◽  
K. W. Wang

Insects are a prime source of inspiration towards the development of small-scale, engineered, flapping wing flight systems. To help interpret the possible energy transformation strategies observed in Diptera as inspiration for mechanical flapping flight systems, we revisit the perspective of the dipteran wing motor as a bistable click mechanism and take a new, and more flexible, outlook to the architectural composition previously considered. Using a representative structural model alongside biological insights and cues from nonlinear dynamics, our analyses and experimental results reveal that a flight mechanism able to adjust motor axial support stiffness and compression characteristics may dramatically modulate the amplitude range and type of wing stroke dynamics achievable. This corresponds to significantly more versatile aerodynamic force generation without otherwise changing flapping frequency or driving force amplitude. Whether monostable or bistable, the axial stiffness is key to enhance compressed motor load bearing ability and aerodynamic efficiency, particularly compared with uncompressed linear motors. These findings provide new foundation to guide future development of bioinspired, flapping wing mechanisms for micro air vehicle applications, and may be used to provide insight to the dipteran muscle-to-wing interface.


Sign in / Sign up

Export Citation Format

Share Document