Impact angle control based on integral sliding mode manifold and extended state observer

Author(s):  
Xiaojian Zhang ◽  
Mingyong Liu ◽  
Yang Li ◽  
Feihu Zhang

This paper discusses the issue of impact angle control over guidance in scenarios of an interceptor against the maneuvering targets. Inspired by switched nonlinear system, an integral sliding mode manifold is first developed. Then, the impact angle control over guidance is derived by using the integral sliding mode manifold with finite time control. To obtain precise guidance effect, the second-order of extended state observer is proposed in the case of unknown target acceleration. Finally, composited impact angle control over guidance based on extended state observer is developed. The stability analysis of the proposed guidance law is demonstrated by using Lyapunov function, and theoretical proof that the line-of-sight angle and line-of-sight angular rate can converge to the desired value in finite steps, respectively. Numerical simulation results are illustrated to validate the performance of the proposed guidance law.

2021 ◽  
Vol 18 (3) ◽  
pp. 172988142110110
Author(s):  
Mingcong Li ◽  
Chen Guo ◽  
Haomiao Yu

This article focuses on the problem of path following for underactuated unmanned surface vehicles (USVs) considering model uncertainties and time-varying ocean currents. An extended state observer (ESO)-based integral line-of-sight (ILOS) with an integral sliding mode adaptive fuzzy control scheme is proposed as the main control framework. First, a novel ESO is employed to estimate the surge and sway velocities based on the kinetic model, which are difficult to measure directly. Then, the adaptive ILOS guidance law is proposed, in which the integral vector is incorporated into the adaptive method to estimate the current velocities. Meanwhile, an improved fuzzy algorithm is introduced to optimize the look-ahead distance. Second, the controller is extended to deal with the USV yaw and surge velocity signal tracking using the integral sliding mode technique. The uncertainties of the USV are approximated via the adaptive fuzzy method, and an auxiliary dynamic system is presented to solve the problem of actuator saturation. Then, it is proved that all of the error signals in the closed-loop control system are uniformly ultimately bounded. Finally, a comparative simulation substantiates the availability and superiority of the proposed method for ESO-based ILOS path following of USV.


Author(s):  
Meijun Duan ◽  
Di Zhou ◽  
Dalin Cheng

Guidance laws are designed for a near space interceptor with line-of-sight angle as input and on–off type thrust as output. The dynamics of thruster is viewed as a first-order lag with on–off working style and is integrated with the target–interceptor engagement dynamics to design bang-bang type sliding mode guidance laws. An extended state observer is designed to estimate the line-of-sight angular rate and the acceleration of target with the line-of-sight angle as a measurement. It is rigorously proved that the states of guidance system converge to a neighborhood of sliding mode in finite time and the line-of-sight angular rate converges to a neighborhood of the origin along the sliding mode in finite time under the designed guidance laws. Furthermore, in order to reduce the switching frequency of thruster, a sliding mode guidance law with hysteresis-band according to the sufficient condition for finite time convergence is proposed. Then, it is integrated with the bang-bang type sliding mode guidance law to yield a composite guidance law. Simulation results show that the extended state observer can effectively estimate the line-of-sight angular rate and the target acceleration, and the proposed sliding mode guidance laws have better performance than typical proportional guidance law.


2020 ◽  
Vol 10 (11) ◽  
pp. 3719
Author(s):  
Ran Jiao ◽  
Wusheng Chou ◽  
Yongfeng Rong ◽  
Mingjie Dong

Aerial operation with unmanned aerial vehicle (UAV) manipulator is a promising field for future applications. However, the quadrotor UAV manipulator usually suffers from several disturbances, such as external wind and model uncertainties, when conducting aerial tasks, which will seriously influence the stability of the whole system. In this paper, we address the problem of high-precision attitude control for quadrotor manipulator which is equipped with a 2-degree-of-freedom (DOF) robotic arm under disturbances. We propose a new sliding-mode extended state observer (SMESO) to estimate the lumped disturbance and build a backstepping attitude controller to attenuate its influence. First, we use the saturation function to replace discontinuous sign function of traditional SMESO to alleviate the estimation chattering problem. Second, by innovatively introducing super-twisting algorithm and fuzzy logic rules used for adaptively updating the observer switching gains, the fuzzy adaptive saturation super-twisting extended state observer (FASTESO) is constructed. Finally, in order to further reduce the impact of sensor noise, we invite a tracking differentiator (TD) incorporated into FASTESO. The proposed control approach is validated with effectiveness in several simulations and experiments in which we try to fly UAV under varied external disturbances.


2013 ◽  
Vol 433-435 ◽  
pp. 1009-1014 ◽  
Author(s):  
Yang Chong ◽  
Ke Zhang

In order to intercept high maneuvering target, a super twisting guidance law based on extended state observer (ESO) is proposed. The target acceleration can be defined as external disturbance which can be estimated in ESO and compensated in super twisting guidance law. The super twisting algorithm can effectively decrease the undesired charting which exists in normal sliding mode control. The simulation results which are verified via computer show that this guidance law has strong robustness, target acceleration can be estimated and compensated, and has good miss distance.


Sign in / Sign up

Export Citation Format

Share Document