Stereovision-based relative states and inertia parameter estimation of noncooperative spacecraft

Author(s):  
Xun Wang ◽  
Zhaokui Wang ◽  
Yulin Zhang

Autonomous proximity operations have recently become appealing as space missions. In particular, the estimation of the relative states and inertia properties of a noncooperative spacecraft is an important but challenging problem, because there might be poor priori information about the target. Using only stereovision measurements, this study developed an adaptive unscented Kalman filter to estimate the relative states and moment-of-inertia ratios of a noncooperative spacecraft. Because the accuracy of the initial relative states has an effect on the estimation convergence performance, attention was also given to their determination. The target’s body-fixed frame was defined in parallel to the chaser’s initial body-fixed frame, and then the initial relative attitude was known. After formulating kinematic constraint equations between the relative states and multiple points on the target surface, particle swarm optimization was utilized to determine the initial relative angular velocity. The initial relative position was also determined under the assumption that the initial relative translational velocity was known. To estimate the relative states and moment-of-inertia ratios using the adaptive unscented Kalman filter, the relative attitude dynamic model was reformulated by designing a novel transition rule with five moment-of-inertia ratios, described in the defined target’s body-fixed frame. The moment-of-inertia ratios were added to the state space, and a new state equation with variant process noise covariance matrix Q was formulated. The measurement updating errors of the relative states were utilized to adaptively modify Q so that the filter could estimate the relative states and moment-of-inertia ratios in two stages. Numerical simulations of the adaptive unscented Kalman filter with unknown moment-of-inertia ratios and the standard unscented Kalman filter with known moment-of-inertia ratios were conducted to illustrate the performance of the adaptive unscented Kalman filter. The obtained results showed the satisfactory convergence of the estimation errors of both the relative states and moment-of-inertia ratios with high accuracy.

2021 ◽  
Author(s):  
Hui Pang ◽  
Peng Wang ◽  
Zijun Xu ◽  
Gang Wang

Abstract This paper proposes an improved adaptive unscented Kalman filter (iAUKF)-based vehicle driving state estimation method. A three-degree-of-freedom vehicle dynamics model is first established, then the varying principles of estimation errors for vehicle driving states using constant process and measurement noises in the standard unscented Kalman filter (UKF) are compared and analyzed. Next, a new type of normalized innovation square-based adaptive noise covariance adjustment strategy is designed and incorporated into the UKF to derive our expected vehicle driving state estimation method. Finally, a comparative simulation investigation using CarSim and MATLAB/Simulink is conducted to validate the effectiveness of the proposed method, and the results show that our proposed iAUKF-based estimation method has higher accuracy and stronger robustness against the standard UKF algorithm.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 607
Author(s):  
Jihan Li ◽  
Xiaoli Li ◽  
Kang Wang ◽  
Guimei Cui

The PM2.5 concentration model is the key to predict PM2.5 concentration. During the prediction of atmospheric PM2.5 concentration based on prediction model, the prediction model of PM2.5 concentration cannot be usually accurately described. For the PM2.5 concentration model in the same period, the dynamic characteristics of the model will change under the influence of many factors. Similarly, for different time periods, the corresponding models of PM2.5 concentration may be different, and the single model cannot play the corresponding ability to predict PM2.5 concentration. The single model leads to the decline of prediction accuracy. To improve the accuracy of PM2.5 concentration prediction in this solution, a multiple model adaptive unscented Kalman filter (MMAUKF) method is proposed in this paper. Firstly, the PM2.5 concentration data in three time periods of the day are taken as the research object, the nonlinear state space model frame of a support vector regression (SVR) method is established. Secondly, the frame of the SVR model in three time periods is combined with an adaptive unscented Kalman filter (AUKF) to predict PM2.5 concentration in the next hour, respectively. Then, the predicted value of three time periods is fused into the final predicted PM2.5 concentration by Bayesian weighting method. Finally, the proposed method is compared with the single support vector regression-adaptive unscented Kalman filter (SVR-AUKF), autoregressive model-Kalman (AR-Kalman), autoregressive model (AR) and back propagation neural network (BP). The prediction results show that the accuracy of PM2.5 concentration prediction is improved in whole time period.


Sign in / Sign up

Export Citation Format

Share Document