Modeling cortical bone adaptation using strain gradients

Author(s):  
Abhishek Kumar Tiwari ◽  
Ajay Goyal ◽  
Jitendra Prasad

Cyclic and low-magnitude loading promotes osteogenesis (i.e. new bone formation). Normal strain, strain energy density and fatigue damage accumulation are typically considered as osteogenic stimuli in computer models to predict site-specific new bone formation. These models however had limited success in explaining osteogenesis near the sites of minimal normal strain, for example, neutral axis of bending. Other stimuli such as fluid motion or strain gradient also stimulate bone formation. In silico studies modeled the new bone formation as a function of fluid motion, however, computation of fluid motion involves complex mathematical calculations. Strain gradients drive fluid flow and thus can also be established as the stimulus. Osteogenic potential of strain gradients is however not well established. The present study establishes strain gradients as osteogenic stimuli. Bending-induced strain gradients are computed at cortical bone cross-sections reported in animal loading in vivo studies. Correlation analysis between strain gradients and site of osteogenesis is analyzed. In silico model is also developed to test the osteogenic potential of strain gradients. The model closely predicts in vivo new bone distribution as a function of strain gradients. The outcome establishes strain gradient as computationally easy and robust stimuli to predict site-specific osteogenesis. The present study may be useful in the development of biomechanical approaches to mitigate bone loss.

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 381
Author(s):  
Hyunmin Choi ◽  
Kyu-Hyung Park ◽  
Narae Jung ◽  
June-Sung Shim ◽  
Hong-Seok Moon ◽  
...  

The aim of this study was to investigate the behavior of dental-derived human mesenchymal stem cells (d-hMSCs) in response to differently surface-treated implants and to evaluate the effect of d-hMSCs on local osteogenesis around an implant in vivo. d-hMSCs derived from alveolar bone were established and cultured on machined, sandblasted and acid-etched (SLA)-treated titanium discs with and without osteogenic induction medium. Their morphological and osteogenic potential was assessed by scanning electron microscopy (SEM) and real-time polymerase chain reaction (RT-PCR) via mixing of 5 × 106 of d-hMSCs with 1 mL of Metrigel and 20 μL of gel-cell mixture, which was dispensed into the defect followed by the placement of customized mini-implants (machined, SLA-treated implants) in New Zealand white rabbits. Following healing periods of 2 weeks and 12 weeks, the obtained samples in each group were analyzed radiographically, histomorphometrically and immunohistochemically. The quantitative change in osteogenic differentiation of d-hMSCs was identified according to the type of surface treatment. Radiographic analysis revealed that an increase in new bone formation was statistically significant in the d-hMSCs group. Histomorphometric analysis was in accordance with radiographic analysis, showing the significantly increased new bone formation in the d-hMSCs group regardless of time of sacrifice. Human nuclei A was identified near the area where d-hMSCs were implanted but the level of expression was found to be decreased as time passed. Within the limitations of the present study, in this animal model, the transplantation of d-hMSCs enhanced the new bone formation around an implant and the survival and function of the stem cells was experimentally proven up to 12 weeks post-sacrifice.


2007 ◽  
Vol 539-543 ◽  
pp. 710-715
Author(s):  
Kotaro Kuroda ◽  
Ryoichi Ichino ◽  
Masazumi Okido

Hydroxyapatite (HAp) coatings were formed on cp titanium plates and rods by the thermal substrate method in an aqueous solution that included 0.3 mM Ca(H2PO4)2 and 0.7 mM CaCl2. The coating experiments were conducted at 40-140 oC and pH = 8 for 15 or 30 min. The properties for the coated samples were studied using XRD, EDX, FT-IR, and SEM. All the specimens were covered with HAp, which had different surface morphologies such as net-like, plate-like and needle-like. After cleaning and sterilization, all the coated specimens were subjected to in vivo and vitro testing. In the in vitro testing, the mouse osteoblast-like cells (MC3T3-E1) were cultured on the coated and non-coated specimens for up to 30 days. Moreover, the specimens (φ2 x 5 mm) were implanted in rats femoral for up to 8 weeks, the osseoinductivity on them were evaluated. In in vitro evaluations, there were not significant differences between the different surface morphologies. In in vivo evaluations, however, two weeks postimplantation, new bone formed on both the HAp coated and non-coated titanium rods in the cancellous and cortical bone. The bone-implant contact ratio, which was used for the evaluation of new bone formation, was significantly dependent on the surface morphology of the HAp, and the results demonstrated that the needle-like coating appears to promote rapid bone formation.


1985 ◽  
Vol 20 (1) ◽  
pp. 1
Author(s):  
Sang Cheol Seong ◽  
Young Min Kim ◽  
Han Koo Lee ◽  
In Ho Choi ◽  
Moon Sang Chung ◽  
...  

2020 ◽  
Vol 9 (2) ◽  
pp. 60-70 ◽  
Author(s):  
Zhijun Li ◽  
Masaki Arioka ◽  
Yindong Liu ◽  
Maziar Aghvami ◽  
Serdar Tulu ◽  
...  

Aims Surgeons and most engineers believe that bone compaction improves implant primary stability without causing undue damage to the bone itself. In this study, we developed a murine distal femoral implant model and tested this dogma. Methods Each mouse received two femoral implants, one placed into a site prepared by drilling and the other into the contralateral site prepared by drilling followed by stepwise condensation. Results Condensation significantly increased peri-implant bone density but it also produced higher strains at the interface between the bone and implant, which led to significantly more bone microdamage. Despite increased peri-implant bone density, condensation did not improve implant primary stability as measured by an in vivo lateral stability test. Ultimately, the condensed bone underwent resorption, which delayed the onset of new bone formation around the implant. Conclusion Collectively, these multiscale analyses demonstrate that condensation does not positively contribute to implant stability or to new peri-implant bone formation. Cite this article: Bone Joint Res. 2020;9(2):60–70.


2010 ◽  
Vol 654-656 ◽  
pp. 2065-2070
Author(s):  
Ho Yeon Song ◽  
Young Hee Kim ◽  
Jyoti M. Anirban ◽  
In Seon Byun ◽  
Kyung A Kwak ◽  
...  

Calcium phosphate ceramics such as hydroxy apatite (HA), β-tricalcium phosphate (β-TCP) and bicalcium phosphate (BCP) have been used as a bone graft biomaterial because of their good biocompatibility and similarity of chemical composition to natural bones. To increase the mechanical and osteoconductive properties, the granules and spongy type porous bone graft substitutes were prepared by fibrous monolithic process and polyurethane foam replica methods, respectively. The pore sizes obtained using these approaches ranged between 100-600 µm. The cytotoxicity, cellular proliferation, differentiation and ECM deposition on the bone graft substitutes were observed by SEM and confocal microscopy. Moreover, the scaffolds were implanted in the rabbit femur. New bone formation and biodegradation of bone graft were observed through follow-up X-ray, micro-CT analysis and histological findings. After several months (2, 3, 6, 12 and 24 months) of implantation, new bone formation and ingrowths were observed in defect sites of the animal by CaP ceramics and 2 to 3 times higher bone ingrowths were confirmed than that of the normal trabecular bones in terms of total bone volume (BV).


2007 ◽  
Vol 330-332 ◽  
pp. 165-168
Author(s):  
Hyun Ju Moon ◽  
Racquel Z. LeGeros ◽  
Kyoung Nam Kim ◽  
Kwang Mahn Kim ◽  
Seong Ho Choi ◽  
...  

The purpose of this study was to compare the bone regenerative effect of calcium phosphate glass according to the particle size in vivo. We prepared two different sizes, that is 400 μm and 40 μm, of calcium phosphate glass powder using the system CaO-CaF2-P2O5-MgO-ZnO. Critical-sized calvarial defects were created in 60 male Sprague-Dawley rats. The animals were divided into 3 groups of 20 animals each. Each defect was filled with a constant weight of 0.5 g calcium phosphate glass powder mixed with saline. As controls, the defect was left empty. The rats were sacrificed 2 or 8 weeks after postsurgery, and the results were evaluated using histological as well as histomorphometrical studies. The particle size of the calcium phosphate was crucial; 400 μm particles promoted new bone formation, while 40 μm particles inhibited it because of severe inflammation.


2011 ◽  
Vol 5 (1) ◽  
pp. 85-92
Author(s):  
Kanok Preativatanyou ◽  
Sittisak Honsawek

Abstract Background: Recombinant human bone morphogenetic proteins (rhBMPs) have been characterized especially chondrogenic and osteogenic activity both in vitro and in vivo studies. However, delivery of more than one growth factor by sustained release carrier to orthopedic site has yet been questionable in terms of efficacy and synergism. Objective: Evaluate osteoinductivity and synergistic effect of rhBMP-2 and -7 using absorbable collagen sponge (ACS) carrier system in vivo. Methods: cDNA of BMP-2 and -7 active domains were cloned and expressed in Escherichia coli BL21 StarTM (DE3) using pRSETc expression system. Then, the purified rhBMPs were loaded onto ACS and evaluated by in vivo rat subcutaneous bioassay. Two and eight weeks postoperatively, all treated groups were histologically verified for evidence of new bone formation and neovascularization by hematoxylin-eosin staining and light microscopy. Results: The Wistar rat treated with rhBMP-2 or -7/ACS exhibited new bone formation, compared to ACS control. The group treated with ACS supplemented with both rhBMP-2 and -7 significantly showed the osteoid matrix very well-organized into trabeculae-like structure with significant blood vessel invasion. Conclusion: The osteogenic induction of rhBMPs was combined with ACS carrier in the in vivo bioassay. In addition, the combination of both two potent recombinant osteoinductive cytokines, rhBMP-2 and -7, with ACS carrier demonstrated synergistic effect and might be a more promising and effective choice for therapeutic applications.


2000 ◽  
Vol 662 ◽  
Author(s):  
Tomoko Sakai ◽  
Masato Ueshima ◽  
Sadao Morita ◽  
Satoshi Nakamura ◽  
Kimihiro Yamashita

AbstractWe have studied the polarized hydroxyapatite (HAp) whose surface was negatively or positively charged. In this study, we assessed the interfaces in vitro and in vivo periodically. As in vitro experiment, samples were immersed in simulated body fluid for 7 days and the surface was examined by scanning electron microscope (SEM). As in vivo experiments, cortical bone defects were created on the femoral trochanters and the condyles of the six Japanese white rabbits and the samples were implanted. The rabbits were sacrificed at 1, 2 and 4 W after the operation to analyze the surfaces by the SEM and the optical microscopy. In this study, a new thick apatite layer was formed on the negatively charged surface (N-surface) after 1week immersion in SBF in vitro. Besides, significant new bone formation was found at 2 weeks after the operation on N-surface in vivo, which was earlier than positively charged or non-polarized HAp surface. From this study negatively charged HAp surface by polarization accelerated the HAp crystal growth or the new bone formation. Thus, this N-surface will be promising for earlier fixation of the prosthesis or better recovery of the bone defect.


2017 ◽  
Vol 31 (7) ◽  
pp. 1049-1061 ◽  
Author(s):  
Tadahiro Takayama ◽  
Jisen Dai ◽  
Keita Tachi ◽  
Ryutaro Shohara ◽  
Hironori Kasai ◽  
...  

Stromal cell-derived factor-1 (SDF-1) is a cytokine that is important in stem and progenitor cell recruitment in tissue repair after injury. Regenerative procedures using collagen membranes (CMs) are presently well established in periodontal and implant dentistry. The objective of this study is to test the subsequent effects of the released SDF-1 from a CM on bone regeneration compared to platelet-derived growth factor (PDGF) in vitro and in vivo. For in vitro studies, cell proliferation, alkaline phosphatase activity, and osteoblastic differentiation marker genes were assessed after MC3T3-E1 mouse preosteoblasts were cultured with CMs containing factors. In vivo effects were investigated by placement of CMs containing SDF-1 or PDGF using a rat mandibular bone defect model. At 4 weeks after the surgery, the new bone formation was measured using micro-computed tomography (µCT) and histological analysis. The results of in vitro studies revealed that CM delivery of SDF-1 significantly induced cell proliferation, ALP activity, and gene expression of all osteogenic markers compared to the CM alone or control, similar to PDGF. Quantitative and qualitative µCT analysis for volume of new bone formation and the percentage of new bone area showed that SDF-1-treated groups significantly increased and accelerated bone regeneration compared to control and CM alone. The enhancement of bone formation in SDF-1-treated animals was dose-dependent and with levels similar to those measured with PDGF. These results suggest that a CM with SDF-1 may be a great candidate for growth factor delivery that could be a substitute for PDGF in clinical procedures where bone regeneration is necessary.


2021 ◽  
Vol 30 (4) ◽  
pp. 339-346
Author(s):  
Hiroshi Nakada ◽  
Takehiro Watanabe ◽  
Takahiro Takahashi ◽  
Hiroki Sato ◽  
Daisuke Isaji ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document