scholarly journals Attractive Serial Dependence in the Absence of an Explicit Task

2018 ◽  
Vol 29 (3) ◽  
pp. 437-446 ◽  
Author(s):  
Michele Fornaciai ◽  
Joonkoo Park

Attractive serial dependence refers to an adaptive change in the representation of sensory information, whereby a current stimulus appears to be similar to a previous one. The nature of this phenomenon is controversial, however, as serial dependence could arise from biased perceptual representations or from biased traces of working memory representation at a decisional stage. Here, we demonstrated a neural signature of serial dependence in numerosity perception emerging early in the visual processing stream even in the absence of an explicit task. Furthermore, a psychophysical experiment revealed that numerosity perception is biased by a previously presented stimulus in an attractive way, not by repulsive adaptation. These results suggest that serial dependence is a perceptual phenomenon starting from early levels of visual processing and occurring independently from a decision process, which is consistent with the view that these biases smooth out noise from neural signals to establish perceptual continuity.

2020 ◽  
Vol 32 (1) ◽  
pp. 141-154 ◽  
Author(s):  
Michele Fornaciai ◽  
Joonkoo Park

Serial dependence—an attractive perceptual bias whereby a current stimulus is perceived to be similar to previously seen ones—is thought to represent the process that facilitates the stability and continuity of visual perception. Recent results demonstrate a neural signature of serial dependence in numerosity perception, emerging very early in the time course during perceptual processing. However, whether such a perceptual signature is retained after the initial processing remains unknown. Here, we address this question by investigating the neural dynamics of serial dependence using a recently developed technique that allowed a reactivation of hidden memory states. Participants performed a numerosity discrimination task during EEG recording, with task-relevant dot array stimuli preceded by a task-irrelevant stimulus inducing serial dependence. Importantly, the neural network storing the representation of the numerosity stimulus was perturbed (or pinged) so that the hidden states of that representation can be explicitly quantified. The results first show that a neural signature of serial dependence emerges early in the brain signals, starting soon after stimulus onset. Critical to the central question, the pings at a later latency could successfully reactivate the biased representation of the initial stimulus carrying the signature of serial dependence. These results provide one of the first pieces of empirical evidence that the biased neural representation of a stimulus initially induced by serial dependence is preserved throughout a relatively long period.


2020 ◽  
Author(s):  
Michele Fornaciai ◽  
IRENE TOGOLI ◽  
Domenica Bueti

Visual serial dependence – a bias making a current stimulus to appear more similar to a previous one – has been shown to be accompanied by a neural signature of information carry-over emerging early in the visual processing stream. Such a neural signature suggests the involvement of early visual processes encoding past information, but whether it also reflects the origin of the behavioural bias is unclear. Here we address this question by assessing neural and behavioural serial dependencies across numerosity, time, and size perception. Our results show a striking dissociation between neural and behavioural effects, with task-independent neural carry-over and task-specific behavioural biases. We thus propose that the neural information carry-over, reflecting an object-level representation including multiple stimulus dimensions, more closely reflects a predictive mechanism mediating perceptual stability, and a precursor of serial dependence. In contrast, task-specific serial dependencies would reflect a higher-level process more related to decision and behaviour than perception per se.


2000 ◽  
Vol 84 (6) ◽  
pp. 2984-2997 ◽  
Author(s):  
Per Jenmalm ◽  
Seth Dahlstedt ◽  
Roland S. Johansson

Most objects that we manipulate have curved surfaces. We have analyzed how subjects during a prototypical manipulatory task use visual and tactile sensory information for adapting fingertip actions to changes in object curvature. Subjects grasped an elongated object at one end using a precision grip and lifted it while instructed to keep it level. The principal load of the grasp was tangential torque due to the location of the center of mass of the object in relation to the horizontal grip axis joining the centers of the opposing grasp surfaces. The curvature strongly influenced the grip forces required to prevent rotational slips. Likewise the curvature influenced the rotational yield of the grasp that developed under the tangential torque load due to the viscoelastic properties of the fingertip pulps. Subjects scaled the grip forces parametrically with object curvature for grasp stability. Moreover in a curvature-dependent manner, subjects twisted the grasp around the grip axis by a radial flexion of the wrist to keep the desired object orientation despite the rotational yield. To adapt these fingertip actions to object curvature, subjects could use both vision and tactile sensibility integrated with predictive control. During combined blindfolding and digital anesthesia, however, the motor output failed to predict the consequences of the prevailing curvature. Subjects used vision to identify the curvature for efficient feedforward retrieval of grip force requirements before executing the motor commands. Digital anesthesia caused little impairment of grip force control when subjects had vision available, but the adaptation of the twist became delayed. Visual cues about the form of the grasp surface obtained before contact was used to scale the grip force, whereas the scaling of the twist depended on visual cues related to object movement. Thus subjects apparently relied on different visuomotor mechanisms for adaptation of grip force and grasp kinematics. In contrast, blindfolded subjects used tactile cues about the prevailing curvature obtained after contact with the object for feedforward adaptation of both grip force and twist. We conclude that humans use both vision and tactile sensibility for feedforward parametric adaptation of grip forces and grasp kinematics to object curvature. Normal control of the twist action, however, requires digital afferent input, and different visuomotor mechanisms support the control of the grasp twist and the grip force. This differential use of vision may have a bearing to the two-stream model of human visual processing.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Helen Feigin ◽  
Shira Baror ◽  
Moshe Bar ◽  
Adam Zaidel

AbstractPerceptual decisions are biased by recent perceptual history—a phenomenon termed 'serial dependence.' Here, we investigated what aspects of perceptual decisions lead to serial dependence, and disambiguated the influences of low-level sensory information, prior choices and motor actions. Participants discriminated whether a brief visual stimulus lay to left/right of the screen center. Following a series of biased ‘prior’ location discriminations, subsequent ‘test’ location discriminations were biased toward the prior choices, even when these were reported via different motor actions (using different keys), and when the prior and test stimuli differed in color. By contrast, prior discriminations about an irrelevant stimulus feature (color) did not substantially influence subsequent location discriminations, even though these were reported via the same motor actions. Additionally, when color (not location) was discriminated, a bias in prior stimulus locations no longer influenced subsequent location discriminations. Although low-level stimuli and motor actions did not trigger serial-dependence on their own, similarity of these features across discriminations boosted the effect. These findings suggest that relevance across perceptual decisions is a key factor for serial dependence. Accordingly, serial dependence likely reflects a high-level mechanism by which the brain predicts and interprets new incoming sensory information in accordance with relevant prior choices.


2018 ◽  
Vol 18 (9) ◽  
pp. 15 ◽  
Author(s):  
Michele Fornaciai ◽  
Joonkoo Park

2015 ◽  
Vol 27 (4) ◽  
pp. 832-841 ◽  
Author(s):  
Amanda K. Robinson ◽  
Judith Reinhard ◽  
Jason B. Mattingley

Sensory information is initially registered within anatomically and functionally segregated brain networks but is also integrated across modalities in higher cortical areas. Although considerable research has focused on uncovering the neural correlates of multisensory integration for the modalities of vision, audition, and touch, much less attention has been devoted to understanding interactions between vision and olfaction in humans. In this study, we asked how odors affect neural activity evoked by images of familiar visual objects associated with characteristic smells. We employed scalp-recorded EEG to measure visual ERPs evoked by briefly presented pictures of familiar objects, such as an orange, mint leaves, or a rose. During presentation of each visual stimulus, participants inhaled either a matching odor, a nonmatching odor, or plain air. The N1 component of the visual ERP was significantly enhanced for matching odors in women, but not in men. This is consistent with evidence that women are superior in detecting, discriminating, and identifying odors and that they have a higher gray matter concentration in olfactory areas of the OFC. We conclude that early visual processing is influenced by olfactory cues because of associations between odors and the objects that emit them, and that these associations are stronger in women than in men.


2020 ◽  
Author(s):  
Peng Cao ◽  
Zhiyong Xie ◽  
Huating Gu ◽  
Congping Shang ◽  
Xinyu Cheng ◽  
...  

Abstract The innate defensive behaviors triggered by environmental threats play a critical role in animal survival. Among these behaviors, defensive attack physically toward threatening target (e.g. predator) is the last line of defense to struggle for survival. How the brain transforms threat-relevant sensory information into the action of defensive attack remains poorly understood. We found that noxious mechanical force in an inescapable context was a key stimulus to trigger defensive attack in laboratory mice. The mechanically-evoked defensive attack was abrogated by photoinhibition of vGAT+ neurons in the anterior hypothalamic nucleus (AHN). The AHN vGAT+ neurons encoded the intensity of mechanical force and were innervated by brain areas related to pain and attack. Activation of these neurons triggered biting attack toward predator, while suppressing other ongoing behaviors. The efferent pathway from AHN vGAT+ neurons to the periaqueductal gray was both sufficient and necessary for mechanically-evoked defensive attack. Together, these data revealed a GABAergic brain circuit engaged in converting noxious mechanical stimuli to neural signals that provoke defensive attack in mice.


2021 ◽  
Author(s):  
Thérèse Collins

The visual world is made up of objects and scenes. Object perception requires both discriminating an individual object from others and binding together different perceptual samples of that object across time. Such binding manifests by serial dependence, the attraction of the current perception of a visual attribute towards values of that attribute seen in the recent past. Scene perception is subserved by global mechanisms like ensemble perception, the rapid extraction of the average feature value of a group of objects. The current study examined to what extent the perception of single objects in multi-object scenes depended on previous feature values of that object, or on the average previous attribute of all objects in the scene. Results show that serial dependence occurs independently on two simultaneously present objects, that ensemble perception depends on previous ensembles, and that serial dependence of an individual object occurs only on the features of that particular object. These results suggest that the temporal integration of successive perceptual samples operates simultaneously at independent levels of visual processing.


2019 ◽  
Author(s):  
R.S. van Bergen ◽  
J.F.M. Jehee

AbstractHow does the brain represent the reliability of its sensory evidence? Here, we test whether sensory uncertainty is encoded in cortical population activity as the width of a probability distribution – a hypothesis that lies at the heart of Bayesian models of neural coding. We probe the neural representation of uncertainty by capitalizing on a well-known behavioral bias called serial dependence. Human observers of either sex reported the orientation of stimuli presented in sequence, while activity in visual cortex was measured with fMRI. We decoded probability distributions from population-level activity and found that serial dependence effects in behavior are consistent with a statistically advantageous sensory integration strategy, in which uncertain sensory information is given less weight. More fundamentally, our results suggest that probability distributions decoded from human visual cortex reflect the sensory uncertainty that observers rely on in their decisions, providing critical evidence for Bayesian theories of perception.


2019 ◽  
Author(s):  
Samson Chota ◽  
Rufin VanRullen

AbstractIt has long been debated whether visual processing is, at least partially, a discrete process. Although vision appears to be a continuous stream of sensory information, sophisticated experiments reveal periodic modulations of perception and behavior. Previous work has demonstrated that the phase of endogenous neural oscillations in the 10 Hz range predicts the “lag” of the flash lag effect, a temporal visual illusion in which a static object is perceived to be lagging in time behind a moving object. Consequently, it has been proposed that the flash lag illusion could be a manifestation of a periodic, discrete sampling mechanism in the visual system. In this experiment we set out to causally test this hypothesis by entraining the visual system to a periodic 10 Hz stimulus and probing the flash lag effect (FLE) at different time points during entrainment. We hypothesized that the perceived FLE would be modulated over time, at the same frequency as the entrainer (10 Hz). A frequency analysis of the average FLE time-course indeed reveals a significant peak at 10 Hz as well as a strong phase consistency between subjects (N=26). Our findings provide evidence for a causal relationship between alpha oscillations and fluctuations in temporal perception.


Sign in / Sign up

Export Citation Format

Share Document