scholarly journals Visual Entrainment at 10 Hz causes periodic modulation of the Flash Lag Illusion

2019 ◽  
Author(s):  
Samson Chota ◽  
Rufin VanRullen

AbstractIt has long been debated whether visual processing is, at least partially, a discrete process. Although vision appears to be a continuous stream of sensory information, sophisticated experiments reveal periodic modulations of perception and behavior. Previous work has demonstrated that the phase of endogenous neural oscillations in the 10 Hz range predicts the “lag” of the flash lag effect, a temporal visual illusion in which a static object is perceived to be lagging in time behind a moving object. Consequently, it has been proposed that the flash lag illusion could be a manifestation of a periodic, discrete sampling mechanism in the visual system. In this experiment we set out to causally test this hypothesis by entraining the visual system to a periodic 10 Hz stimulus and probing the flash lag effect (FLE) at different time points during entrainment. We hypothesized that the perceived FLE would be modulated over time, at the same frequency as the entrainer (10 Hz). A frequency analysis of the average FLE time-course indeed reveals a significant peak at 10 Hz as well as a strong phase consistency between subjects (N=26). Our findings provide evidence for a causal relationship between alpha oscillations and fluctuations in temporal perception.

Perception ◽  
1997 ◽  
Vol 26 (1_suppl) ◽  
pp. 24-24 ◽  
Author(s):  
J H van Hateren

The first steps of processing in the visual system of the blowfly are well suited for studying the relationship between the properties of the environment and the function of visual processing (eg Srinivasan et al, 1982 Proceedings of the Royal Society, London B216 427; van Hateren, 1992 Journal of Comparative Physiology A171 157). Although the early visual system appears to be linear to some extent, there are also reports on functionally significant nonlinearities (Laughlin, 1981 Zeitschrift für Naturforschung36c 910). Recent theories using information theory for understanding the early visual system perform reasonably well, but not quite as well as the real visual system when confronted with natural stimuli [eg van Hateren, 1992 Nature (London)360 68]. The main problem seems to be that they lack a component that adapts with the right time course to changes in stimulus statistics (eg the local average light intensity). In order to study this problem of adaptation with a relatively simple, yet realistic, stimulus I recorded time series of natural intensities, and played them back via a high-brightness LED to the visual system of the blowfly ( Calliphora vicina). The power spectra of the intensity measurements and photoreceptor responses behave approximately as 1/ f, with f the temporal frequency, whilst those of second-order neurons (LMCs) are almost flat. The probability distributions of the responses of LMCs are almost gaussian and largely independent of the input contrast, unlike the distributions of photoreceptor responses and intensity measurements. These results suggest that LMCs are in effect executing a form of contrast normalisation in the time domain.


2003 ◽  
Vol 15 (2) ◽  
pp. 209-217 ◽  
Author(s):  
Rufin VanRullen ◽  
Christof Koch

The ventral visual pathway implements object recognition and categorization in a hierarchy of processing areas with neuronal selectivities of increasing complexity. The presence of massive feedback connections within this hierarchy raises the possibility that normal visual processing relies on the use of computational loops. It is not known, however, whether object recognition can be performed at all without such loops (i.e., in a purely feed-forward mode). By analyzing the time course of reaction times in a masked natural scene categorization paradigm, we show that the human visual system can generate selective motor responses based on a single feed-forward pass. We confirm these results using a more constrained letter discrimination task, in which the rapid succession of a target and mask is actually perceived as a distractor. We show that a masked stimulus presented for only 26 msec—and often not consciously perceived—can fully determine the earliest selective motor responses: The neural representations of the stimulus and mask are thus kept separated during a short period corresponding to the feed-forward “sweep.” Therefore, feedback loops do not appear to be “mandatory” for visual processing. Rather, we found that such loops allow the masked stimulus to reverberate in the visual system and affect behavior for nearly 150 msec after the feed-forward sweep.


2020 ◽  
Author(s):  
Franziska Geiger ◽  
Martin Schrimpf ◽  
Tiago Marques ◽  
James J. DiCarlo

AbstractAfter training on large datasets, certain deep neural networks are surprisingly good models of the neural mechanisms of adult primate visual object recognition. Nevertheless, these models are poor models of the development of the visual system because they posit millions of sequential, precisely coordinated synaptic updates, each based on a labeled image. While ongoing research is pursuing the use of unsupervised proxies for labels, we here explore a complementary strategy of reducing the required number of supervised synaptic updates to produce an adult-like ventral visual stream (as judged by the match to V1, V2, V4, IT, and behavior). Such models might require less precise machinery and energy expenditure to coordinate these updates and would thus move us closer to viable neuroscientific hypotheses about how the visual system wires itself up. Relative to the current leading model of the adult ventral stream, we here demonstrate that the total number of supervised weight updates can be substantially reduced using three complementary strategies: First, we find that only 2% of supervised updates (epochs and images) are needed to achieve ~80% of the match to adult ventral stream. Second, by improving the random distribution of synaptic connectivity, we find that 54% of the brain match can already be achieved “at birth” (i.e. no training at all). Third, we find that, by training only ~5% of model synapses, we can still achieve nearly 80% of the match to the ventral stream. When these three strategies are applied in combination, we find that these new models achieve ~80% of a fully trained model’s match to the brain, while using two orders of magnitude fewer supervised synaptic updates. These results reflect first steps in modeling not just primate adult visual processing during inference, but also how the ventral visual stream might be “wired up” by evolution (a model’s “birth” state) and by developmental learning (a model’s updates based on visual experience).


2009 ◽  
Vol 21 (2) ◽  
pp. 259-274 ◽  
Author(s):  
Ingo Hertrich ◽  
Klaus Mathiak ◽  
Werner Lutzenberger ◽  
Hermann Ackermann

Cross-modal fusion phenomena suggest specific interactions of auditory and visual sensory information both within the speech and nonspeech domains. Using whole-head magnetoencephalography, this study recorded M50 and M100 fields evoked by ambiguous acoustic stimuli that were visually disambiguated to perceived /ta/ or /pa/ syllables. As in natural speech, visual motion onset preceded the acoustic signal by 150 msec. Control conditions included visual and acoustic nonspeech signals as well as visual-only and acoustic-only stimuli. (a) Both speech and nonspeech motion yielded a consistent attenuation of the auditory M50 field, suggesting a visually induced “preparatory baseline shift” at the level of the auditory cortex. (b) Within the temporal domain of the auditory M100 field, visual speech and nonspeech motion gave rise to different response patterns (nonspeech: M100 attenuation; visual /pa/: left-hemisphere M100 enhancement; /ta/: no effect). (c) These interactions could be further decomposed using a six-dipole model. One of these three pairs of dipoles (V270) was fitted to motion-induced activity at a latency of 270 msec after motion onset, that is, the time domain of the auditory M100 field, and could be attributed to the posterior insula. This dipole source responded to nonspeech motion and visual /pa/, but was found suppressed in the case of visual /ta/. Such a nonlinear interaction might reflect the operation of a binary distinction between the marked phonological feature “labial” versus its underspecified competitor “coronal.” Thus, visual processing seems to be shaped by linguistic data structures even prior to its fusion with auditory information channel.


1998 ◽  
Vol 79 (6) ◽  
pp. 3272-3278 ◽  
Author(s):  
Matthew T. Schmolesky ◽  
Youngchang Wang ◽  
Doug P. Hanes ◽  
Kirk G. Thompson ◽  
Stefan Leutgeb ◽  
...  

Schmolesky, Matthew T., Youngchang Wang, Doug P. Hanes, Kirk G. Thompson, Stefan Leutgeb, Jeffrey D. Schall, and Audie G. Leventhal. Signal timing across the macaque visual system. J. Neurophysiol. 79: 3272–3278, 1998. The onset latencies of single-unit responses evoked by flashing visual stimuli were measured in the parvocellular (P) and magnocellular (M) layers of the dorsal lateral geniculate nucleus (LGNd) and in cortical visual areas V1, V2, V3, V4, middle temporal area (MT), medial superior temporal area (MST), and in the frontal eye field (FEF) in individual anesthetized monkeys. Identical procedures were carried out to assess latencies in each area, often in the same monkey, thereby permitting direct comparisons of timing across areas. This study presents the visual flash-evoked latencies for cells in areas where such data are common (V1 and V2), and are therefore a good standard, and also in areas where such data are sparse (LGNd M and P layers, MT, V4) or entirely lacking (V3, MST, and FEF in anesthetized preparation). Visual-evoked onset latencies were, on average, 17 ms shorter in the LGNd M layers than in the LGNd P layers. Visual responses occurred in V1 before any other cortical area. The next wave of activation occurred concurrently in areas V3, MT, MST, and FEF. Visual response latencies in areas V2 and V4 were progressively later and more broadly distributed. These differences in the time course of activation across the dorsal and ventral streams provide important temporal constraints on theories of visual processing.


Perception ◽  
10.1068/p5653 ◽  
2007 ◽  
Vol 36 (7) ◽  
pp. 1043-1048 ◽  
Author(s):  
Stuart Anstis

In the ‘flash-lag’ effect, a static object that is briefly flashed next to a moving object appears to lag behind the moving object. A flash was put up next to an intersection that appeared to be moving clockwise along a circular path but was actually moving counterclockwise [the chopstick illusion; Anstis, 1990, in AI and the Eye Eds A Blake, T Troscianko (London: John Wiley) pp 105–117; 2003, in Levels of Perception Eds L Harris, M Jenkin (New York: Springer) pp 90–93]. As a result, the flash appeared displaced clockwise. This was appropriate to the physical, not the subjective, direction of rotation, and it suggests that the flash-lag illusion occurs early in the visual system, before motion signals are parsed into moving objects.


2000 ◽  
Vol 84 (6) ◽  
pp. 2984-2997 ◽  
Author(s):  
Per Jenmalm ◽  
Seth Dahlstedt ◽  
Roland S. Johansson

Most objects that we manipulate have curved surfaces. We have analyzed how subjects during a prototypical manipulatory task use visual and tactile sensory information for adapting fingertip actions to changes in object curvature. Subjects grasped an elongated object at one end using a precision grip and lifted it while instructed to keep it level. The principal load of the grasp was tangential torque due to the location of the center of mass of the object in relation to the horizontal grip axis joining the centers of the opposing grasp surfaces. The curvature strongly influenced the grip forces required to prevent rotational slips. Likewise the curvature influenced the rotational yield of the grasp that developed under the tangential torque load due to the viscoelastic properties of the fingertip pulps. Subjects scaled the grip forces parametrically with object curvature for grasp stability. Moreover in a curvature-dependent manner, subjects twisted the grasp around the grip axis by a radial flexion of the wrist to keep the desired object orientation despite the rotational yield. To adapt these fingertip actions to object curvature, subjects could use both vision and tactile sensibility integrated with predictive control. During combined blindfolding and digital anesthesia, however, the motor output failed to predict the consequences of the prevailing curvature. Subjects used vision to identify the curvature for efficient feedforward retrieval of grip force requirements before executing the motor commands. Digital anesthesia caused little impairment of grip force control when subjects had vision available, but the adaptation of the twist became delayed. Visual cues about the form of the grasp surface obtained before contact was used to scale the grip force, whereas the scaling of the twist depended on visual cues related to object movement. Thus subjects apparently relied on different visuomotor mechanisms for adaptation of grip force and grasp kinematics. In contrast, blindfolded subjects used tactile cues about the prevailing curvature obtained after contact with the object for feedforward adaptation of both grip force and twist. We conclude that humans use both vision and tactile sensibility for feedforward parametric adaptation of grip forces and grasp kinematics to object curvature. Normal control of the twist action, however, requires digital afferent input, and different visuomotor mechanisms support the control of the grasp twist and the grip force. This differential use of vision may have a bearing to the two-stream model of human visual processing.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 823
Author(s):  
Goran Šimić ◽  
Mladenka Tkalčić ◽  
Vana Vukić ◽  
Damir Mulc ◽  
Ena Španić ◽  
...  

Emotions arise from activations of specialized neuronal populations in several parts of the cerebral cortex, notably the anterior cingulate, insula, ventromedial prefrontal, and subcortical structures, such as the amygdala, ventral striatum, putamen, caudate nucleus, and ventral tegmental area. Feelings are conscious, emotional experiences of these activations that contribute to neuronal networks mediating thoughts, language, and behavior, thus enhancing the ability to predict, learn, and reappraise stimuli and situations in the environment based on previous experiences. Contemporary theories of emotion converge around the key role of the amygdala as the central subcortical emotional brain structure that constantly evaluates and integrates a variety of sensory information from the surroundings and assigns them appropriate values of emotional dimensions, such as valence, intensity, and approachability. The amygdala participates in the regulation of autonomic and endocrine functions, decision-making and adaptations of instinctive and motivational behaviors to changes in the environment through implicit associative learning, changes in short- and long-term synaptic plasticity, and activation of the fight-or-flight response via efferent projections from its central nucleus to cortical and subcortical structures.


2012 ◽  
Vol 24 (2) ◽  
pp. 521-529 ◽  
Author(s):  
Frank Oppermann ◽  
Uwe Hassler ◽  
Jörg D. Jescheniak ◽  
Thomas Gruber

The human cognitive system is highly efficient in extracting information from our visual environment. This efficiency is based on acquired knowledge that guides our attention toward relevant events and promotes the recognition of individual objects as they appear in visual scenes. The experience-based representation of such knowledge contains not only information about the individual objects but also about relations between them, such as the typical context in which individual objects co-occur. The present EEG study aimed at exploring the availability of such relational knowledge in the time course of visual scene processing, using oscillatory evoked gamma-band responses as a neural correlate for a currently activated cortical stimulus representation. Participants decided whether two simultaneously presented objects were conceptually coherent (e.g., mouse–cheese) or not (e.g., crown–mushroom). We obtained increased evoked gamma-band responses for coherent scenes compared with incoherent scenes beginning as early as 70 msec after stimulus onset within a distributed cortical network, including the right temporal, the right frontal, and the bilateral occipital cortex. This finding provides empirical evidence for the functional importance of evoked oscillatory activity in high-level vision beyond the visual cortex and, thus, gives new insights into the functional relevance of neuronal interactions. It also indicates the very early availability of experience-based knowledge that might be regarded as a fundamental mechanism for the rapid extraction of the gist of a scene.


1976 ◽  
Vol 9 (3) ◽  
pp. 311-375 ◽  
Author(s):  
Werner Reichardt ◽  
Tomaso Poggio

An understanding of sensory information processing in the nervous system will probably require investigations with a variety of ‘model’ systems at different levels of complexity.Our choice of a suitable model system was constrained by two conflicting requirements: on one hand the information processing properties of the system should be rather complex, on the other hand the system should be amenable to a quantitative analysis. In this sense the fly represents a compromise.In these two papers we explore how optical information is processed by the fly's visual system. Our objective is to unravel the logical organization of the fly's visual system and its underlying functional and computational principles. Our approach is at a highly integrative level. There are different levels of analysing and ‘understanding’ complex systems, like a brain or a sophisticated computer.


Sign in / Sign up

Export Citation Format

Share Document