Innovation enables shale development

Author(s):  
Cody Teff

The development of tight rock hydrocarbon resources, also known as shales or unconventional reservoirs, has been enabled by the combination of horizontal drilling and hydraulic fracturing. These techniques are described. Shales have required this innovation for the hydrocarbons to be developed: the reason for this is discussed.

2021 ◽  
Author(s):  
Rabah Mesdour ◽  
Moemen Abdelrahman ◽  
Abdulbari Alhayaf

Abstract Horizontal drilling and multistage hydraulic fracturing applied in unconventional reservoirs over the past decade to create a large fracture surface area to improve the well productivity. The combination of reservoir quality with perforation cluster spacing and fracture staging are keys to successful hydraulic fracturing treatment for horizontal wells. The objective of this work is to build and calibrate a dynamic model by integrating geologic, hydraulic fracture, and reservoir modeling to optimize the number of clusters and other completion parameters for a horizontal well drilled in the source rock reservoir using simulation and analytical models. The methodology adopted in this study covers the integration of geological, petrophysical, and production data analysis to evaluate reservoir and completion qualities and quantify the heterogeneity and the perforation clusters number required within a frac stage. Assuming all perforation clusters are uniformly distributed within a stage. The hydraulic planer fracture attributes assumed and the surface production measurement together with the production profile were used to calibrate the reservoir model. The properties of the Stimulated Reservoir Volume "SRV" were defined after the final calibration using reservoir model including hydraulic fractures. The calibrated reservoir model was used to carry out sensitivity analyses for cluster spacing optimization and other completion parameters considering the surface and reservoir constraints. An optimum cluster spacing was observed based on the Estimated Ultimate Recovery "EUR" of the subject well by reservoir properties. The final results based on 70% of perforation clusters contribution to production observed from PLT log, and the results of this study were implemented. Afterwards, another study has been undertaken to increasing the stimulation effectiveness and maximizing the number of perforation clusters contributing to productivity as an area for improvement to engineering the completion design. The methodology adopted in this study identifies the most important parameters of completion affecting well productivity for specific unconventional reservoirs. This study will help to engineer completion design, improve cluster efficiency, reduce cost and increase well EUR for the development phase.


2019 ◽  
Vol 3 (1) ◽  
pp. 1-14
Author(s):  
Miriam R. Aczel ◽  
Karen E. Makuch

High-volume hydraulic fracturing combined with horizontal drilling has “revolutionized” the United States’ oil and gas industry by allowing extraction of previously inaccessible oil and gas trapped in shale rock [1]. Although the United States has extracted shale gas in different states for several decades, the United Kingdom is in the early stages of developing its domestic shale gas resources, in the hopes of replicating the United States’ commercial success with the technologies [2, 3]. However, the extraction of shale gas using hydraulic fracturing and horizontal drilling poses potential risks to the environment and natural resources, human health, and communities and local livelihoods. Risks include contamination of water resources, air pollution, and induced seismic activity near shale gas operation sites. This paper examines the regulation of potential induced seismic activity in Oklahoma, USA, and Lancashire, UK, and concludes with recommendations for strengthening these protections.


Author(s):  
Bin Chen ◽  
Beatriz Ramos Barboza ◽  
Yanan Sun ◽  
Jie Bai ◽  
Hywel R Thomas ◽  
...  

AbstractAlong with horizontal drilling techniques, multi-stage hydraulic fracturing has improved shale gas production significantly in past decades. In order to understand the mechanism of hydraulic fracturing and improve treatment designs, it is critical to conduct modelling to predict stimulated fractures. In this paper, related physical processes in hydraulic fracturing are firstly discussed and their effects on hydraulic fracturing processes are analysed. Then historical and state of the art numerical models for hydraulic fracturing are reviewed, to highlight the pros and cons of different numerical methods. Next, commercially available software for hydraulic fracturing design are discussed and key features are summarised. Finally, we draw conclusions from the previous discussions in relation to physics, method and applications and provide recommendations for further research.


2018 ◽  
Vol 139 ◽  
pp. 62-76 ◽  
Author(s):  
Priscille Etoughe ◽  
Prashanth Siddhamshetty ◽  
Kaiyu Cao ◽  
Rajib Mukherjee ◽  
Joseph Sang-II Kwon

2019 ◽  
Vol 38 (2) ◽  
pp. 106-115 ◽  
Author(s):  
Phuong Hoang ◽  
Arcangelo Sena ◽  
Benjamin Lascaud

The characterization of shale plays involves an understanding of tectonic history, geologic settings, reservoir properties, and the in-situ stresses of the potential producing zones in the subsurface. The associated hydrocarbons are generally recovered by horizontal drilling and hydraulic fracturing. Historically, seismic data have been used mainly for structural interpretation of the shale reservoirs. A primary benefit of surface seismic has been the ability to locate and avoid drilling into shallow carbonate karsting zones, salt structures, and basement-related major faults which adversely affect the ability to drill and complete the well effectively. More recent advances in prestack seismic data analysis yield attributes that appear to be correlated to formation lithology, rock strength, and stress fields. From these, we may infer preferential drilling locations or sweet spots. Knowledge and proper utilization of these attributes may prove valuable in the optimization of drilling and completion activities. In recent years, geophysical data have played an increasing role in supporting well planning, hydraulic fracturing, well stacking, and spacing. We have implemented an integrated workflow combining prestack seismic inversion and multiattribute analysis, microseismic data, well-log data, and geologic modeling to demonstrate key applications of quantitative seismic analysis utilized in developing ConocoPhillips' acreage in the Delaware Basin located in Texas. These applications range from reservoir characterization to well planning/execution, stacking/spacing optimization, and saltwater disposal. We show that multidisciplinary technology integration is the key for success in unconventional play exploration and development.


2016 ◽  
Vol 36 ◽  
pp. 875-892 ◽  
Author(s):  
Huiying Tang ◽  
Philip H. Winterfeld ◽  
Yu-Shu Wu ◽  
Zhao-qin Huang ◽  
Yuan Di ◽  
...  

2020 ◽  
Author(s):  
Anna Shevtsova ◽  
Egor Filev ◽  
Maria Bobrova ◽  
Sergey Stanchits ◽  
Vladimir Stukachev

<p>Nowadays Hydraulic Fracturing (HF) is one of the most effective stimulation technique for hydrocarbon extraction from unconventional reservoirs, as well as enhanced geothermal applications. Practical applications of HF can have different aims. In one case, we need to stop cracks inside the host rock to avoid some HF breakthroughs into other formations and possible groundwater pollutions. The second situation is when we need to fracture several bedding planes in a reservoir which has a complex structure, especially in case of the presence of multiple natural fractures in unconventional reservoir. It is important to study hydraulic fracturing, its propagation and conditions of interaction with interfaces in laboratory conditions before expensive field application.</p><p>The present work demonstrates the results of a laboratory study designed to understand fracture interaction with artificial interfaces. For the first series of experiments, we used some natural materials such as shales, sandstones, dolomites and limestones with different porosity, permeability and mechanical properties. During these experiments we initiated hydraulic fracturing in homogeneous specimens with and without artificial surfaces, modelling natural fractures or bedding planes in unconventional reservoirs. For the second series of experiments, we used a combination of different materials to understand HF propagation in heterogeneous media, to study conditions of HF crossing or arrest at the boundaries between different types of rock. These laboratory experiments were done to create HF simulating natural processes in fractured and heterogeneous rocks or reservoirs.</p><p>Series of hydraulic fracturing experiments under uniaxial load conditions were conducted using the multifunctional system MTS 815.04. Before testing, samples were scanned by 3D CT System to characterize the rock fabric, and after testing, CT scanning was repeated to characterize 3D shape of created HF. The dynamics of HF initiation and propagation was monitored by Acoustic Emission (AE) technique, using piezoelectric sensors glued to the surface of the rock to record elastic waves radiated during the process of HF propagation. The experiments were made with different injection rates and fluid viscosities. Changes in radial strain, injection pressure and microseismic data over time were recorded.</p><p>As the result, these experiments indicate significant factors (rock heterogeneity, porosity, permeability, fluid viscosity and injection rate), influencing cracks initiation, propagation or arrest on the artificial interface. The fracture propagation and opening are characterized by measured radial deformation, fluid pressure and geometrical orientation in the sample volume. The experiments demonstrated, that fracture easily crossed artificial surface in the homogeneous limestone samples. And cracks initiated in limestone were arrested on the border with shale. In all cases combination of the AE and deformation monitoring allows to indicate fracture initiation, propagation and arrest.</p>


Sign in / Sign up

Export Citation Format

Share Document