Experimental analysis on thermal and friction factor characteristics of fluid flow in tube with novel double strip helical screw tape

Author(s):  
Shashank R Chaurasia ◽  
RM Sarviya

An experimental analysis has been carried out to investigate the thermal and friction factor characteristics of fluid flow in a tube with double strip helical screw tape (DS-HST) inserts with different values of twist ratio and compared with single strip helical screw tape inserts and plain tube. Water is used as a working fluid at different flow rates with constant heat flux conditions. CFD analysis is also carried out to visualize thermal and fluid flow characteristics of fluid flow in tube with inserts. Experimental results have showed that Nusselt number and friction factor have attained excellent enhancement with double strip helical screw tape inserts in the range of flow rates than single strip helical screw tape inserts at the value of twist ratio 1.5. Correlation is also developed for Nusselt number with a range of Reynolds number, twist ratio and number of strips. Moreover, the performance ratio has attained maximum value at twist ratio of 2.5 with high values of flow rate. It is concluded that DS-HST is able to attain enhancement in the efficiency of heat exchanger, causing a reduction in size for thermal applications.

Author(s):  
Shashank Ranjan Chaurasia ◽  
R. M. Sarviya

Abstract In heat exchangers, twisted tape insert is a technique to enhance heat transfer. In this paper, the experimental investigation is arranged to analyse thermal performance and entropy generation analysis on fluid flow in helical screw inserts with number of strips. The Nusselt number is achieved enhancement with double strip as compared to single strip helical screw inserts at decreased values of twist ratio and increased values of flow rates. The Nusselt number is achieved maximum enhancement of 112% with double strip helical screw insert than plain tube at 4000 of Reynolds number, whereas it is found higher value at Reynolds number of 16000. The common correlations of Nusselt number and friction factor with repect of Reynolds number, number of the strips and twist ratio are generated. The entropy generation analysis is also performed. The thermal performance factor is found increment with double strip than single strip helical screw inserts at twist ratio of 2.5 and 3, whereas, it is attained maximum value of 1.5 at twist ratio 2.5 and Reynolds number of 16000 with double strip helical screw insert. The double strip helical screw inserts are suitable for reducing the size of heat exchanger, which could dercrease the size of many thermal applications as solar water heater, radiator, electronic cooling systems.


Author(s):  
Shashank Ranjan Chaurasia ◽  
R. M. Sarviya

Abstract An experimental analysis is arranged to evaluate thermal hydraulic performance analysis on fluid flow in helical screw inserts in tube with number of strips and different twist ratios in Transition flow regime. Single strip insert is also compared with double strip inserts of helical screw inserts with three values of twist ratios. Heat transfer enhancement is achieved with fluid flow in double strip as compared to single strip helical screw insert at decreases values of twist ratios and increases values of Reynolds number (Re). Maximum enhancement in the value of Nusselt number is achieved with double strip inserts at low value of twist ratio and Reynolds number as compared to Single strip inserts. Common correlations of Nusselt number and friction factor are generated. Thermal performance factor (TPF) is achieved maximum values with double strip insert at all flow rates at 2.5 of twist ratio than single strip inserts. Double strip inserts show suitability of helical screw insert in heat exchangers to compact the size of thermal applications.


2019 ◽  
Vol 20 (3) ◽  
pp. 180-192
Author(s):  
Suha A. Mohammed ◽  
Ekhlas M. Fayyadh

An experimental investigation was conducted to study single-phase fluid flow and heat transfer in a copper micro channel. To investigate the effect of artificial cavities on fluid flow and single phase heat transfer in micro channel heat sink, two model of straight micro channel recognized as two models (model -1and model -2) were designed and manufactured ,where model-1 have smooth bottom surface while Model-2 have 47 artificial cavities distributed uniformly at the bottom surface along the micro channel length. The two models having the same nominal dimension of 300?m height and 300?m depth while the real dimension value are 367 ?m for width and 296 ?m for depth .De-ionized water was used as the working fluids. Experimental test was conducted at 30?C inlet temperature with Reynolds numbers range from 700 to 2200 covering laminar flow conditions. The experiments were conducted with horizontal micro channel under both adiabatic (for friction factor calculation) and diabatic (for Nusselt number calculation) conditions. The results indicated that the experimental Darcy friction factor can be predicted well with conventional scale fanning friction factor correlations for developing flow in laminar region by shah and London (1978) correlation for two models. Also, the experimental Nusselt number Agree well with each correlation of shah and London (1978) and Mirmanto correlation in laminar region.


Author(s):  
Shashank Ranjan Chaurasia ◽  
R. M. Sarviya

Abstract The experimental analysis is arranged to evaluate the thermal hydraulic performance on nanofluid flow in helical screw insert with tube at a number of strips and different twist ratios in laminar flow regime. The single strip (SS) helical screw inserts are also compared with the double strip (DS) helical screw inserts. The heat transfer enhancement is achieved with nanofluid flow in double strip as compared with single strip helical screw insert at decreased values of twist ratio and increased values of Reynolds number. A maximum enhancement of 421% is found in the value of Nusselt number with double strip helical screw insert at twist ratio of 1.5 and low value of Reynolds number in the flow of nanofluid than water in plain tube. The common correlations of Nusselt number and friction factor are generated. The thermal performance factor (TPF) is achieved at a maximum value of 2.42 with double strip than single strip helical screw inserts at twist ratio of 2.5 and low value of Reynolds number. The present analysis shows suitability of the double strip helical screw insert to enable miniaturization of the heat exchangers. A compact heat exchanger decreases the size of thermal application such as solar water heater, solar power plants, electronic cooling systems, radiator, etc., which could save environment by pollution reduction with utilization of energy.


2009 ◽  
Vol 131 (10) ◽  
Author(s):  
A. K. Majumder

Accurate knowledge of the fluid flow depth over an inclined rectangular open channel is of obvious value in the modeling of flow characteristics over that channel. Understanding of this type of fluid flow behavior is of immense importance to the mineral processing fraternity as a large number of separators work on this principle. Therefore, a multiple point computer-controlled depth gauge was developed to measure water flow depths at various flow rates ranging from 0.81 l/s to 2.26 l/s over an inclined (17.5 deg) rectangular channel (2400 mm long and 370 mm wide). This paper describes the details about the device and the data acquisition procedure. An attempt has also been made to predict the measured flow depths at various operating conditions by using a modified form of the conventional law of the wall model. An overall relative error of 4.23% between the measured and the predicted flow depths at various flow rates establishes the validity of the model.


2012 ◽  
Vol 16 (suppl. 2) ◽  
pp. 471-482 ◽  
Author(s):  
Velimir Stefanovic ◽  
Sasa Pavlovic ◽  
Marko Ilic ◽  
Nenad Apostolovic ◽  
Dragan Kustrimovic

Solar energy may be practically utilized directly through transformation into heat, electrical or chemical energy. A physical and mathematical model is presented, as well as a numerical procedure for predicting thermal performances of the P2CC solar concentrator. The demonstrated prototype has the reception angle of 110? at concentration ratio CR = 1.38, with the significant reception of diffuse radiation. The solar collector P2CC is designed for the area of middle temperature conversion of solar radiation into heat. The working fluid is water with laminar flow through a copper pipe surrounded by an evacuated glass layer. Based on the physical model, a mathematical model is introduced, which consists of energy balance equations for four collector components. In this paper, water temperatures in flow directions are numerically predicted, as well as temperatures of relevant P2CC collector components for various values of input temperatures and mass flow rates of the working fluid, and also for various values of direct sunlight radiation and for different collector lengths. The device which is used to transform solar energy to heat is referred to as solar collector. This paper gives numerical estimated changes of temperature in the direction of fluid flow for different flow rates, different solar radiation intensity and different inlet fluid temperatures. The increase in fluid flow reduces output temperature, while the increase in solar radiation intensity and inlet water temperature increases output temperature of water. Furthermore, the dependence on fluid output temperature is determined, along with the current efficiency by the number of nodes in the numerical calculation.


Author(s):  
Shashank Ranjan Chaurasia ◽  
RM Sarviya

In the heat exchangers, twisted tape insert is a technique to enhance heat transfer. In this paper, the experimental and numerical investigations are arranged to analyze thermal performance with entropy generation analysis on single and double strip helical screw tape inserts. The finite volume method is used with shear stress transport K-ω model to analyze fluid flow in tube with inserts. The Nusselt number attained enhancement with double strip as compared to single strip helical screw inserts at decreased values of twist ratio and increased values of Reynolds number. However, the Nusselt number attained maximum enhancement of 112% with double strip helical screw insert than plain tube at 4000 of Reynolds number (Re). The common correlations for Nusselt number and friction factor are generated with respect to Reynolds number, number of the strips and twist ratio. Entropy generation analysis is also performed. The thermal performance factor attained its enhancement with double strip than single strip helical screw inserts at twist ratio of 2.5 and 3; whereas, double strip helical screw insert attained maximum value of 1.5 at twist ratio of 2.5 and Reynolds number of 16000. The double strip helical screw inserts are suitable for miniaturization of heat exchanger.


2016 ◽  
Vol 13 (2) ◽  
pp. 93-108 ◽  
Author(s):  
Mazen M. Abu-Khader

Purpose The purpose of this paper is to update a previous review work (Abu-khader, 2006, Heat & Mass Transfer, Vol. 43 No. 2, pp. 123-134) and highlight the new research methods on the use of twisted tapes and the application of different configurations of these tape inserts. Also, based on a vast collection of experimental data in open literature, generalized Nusselt number (Nu) and friction factor (f) correlations as the function of twist ratio were developed with maximum error around ± 15 per cent. The present paper examines several case studies which apply complex configurations of twisted inserts. Design/methodology/approach Using the developed correlations, an equivalent Nusselt number and friction factor of typical type twist insert were generated which achieved the same performance of each complex configuration. Findings The open literature contains large number of wired and complex configurations of twisted tape inserts. Their applicability to real industrial use is questionable. Originality/value This paper presents an up-to-date review on the use of twisted tape in research, highlights the different tape configurations and proposes general correlations for traditional twisted tape inserts.


2009 ◽  
Vol 131 (9) ◽  
Author(s):  
Liting Tian ◽  
Yaling He ◽  
Pan Chu ◽  
Wenquan Tao

In this paper, three-dimensional numerical simulations with renormalization-group (RNG) k-ε model are performed for the air-side heat transfer and fluid flow characteristics of wavy fin-and-tube heat exchanger with delta winglet vortex generators. The Reynolds number based on the tube outside diameter varies from 500 to 5000. The effects of different geometrical parameters with varying attack angle of delta winglet (β=30 deg, β=45 deg, and β=60 deg), tube row number (2–4), and wavy angle of the fin (θ=0–20 deg) are examined. The numerical results show that each delta winglet generates a downstream main vortex and a corner vortex. The longitudinal vortices are disrupted by the downstream wavy trough and only propagate a short distance along the main flow direction but the vortices greatly enhance the heat transfer in the wake region behind the tube. Nusselt number and friction factor both increase with the increase in the attack angle β, and the case of β=30 deg has the maximum value of j/f. The effects of the tube row number on Nusselt number and friction factor are very small, and the heat transfer and fluid flow become fully developed very quickly. The case of θ=5 deg has the minimum value of Nusselt number, while friction factor always increases with the increase in wavy angle. The application of delta winglet enhances the heat transfer performance of the wavy fin-and-tube heat exchanger with modest pressure drop penalty.


2014 ◽  
Vol 592-594 ◽  
pp. 1590-1595 ◽  
Author(s):  
Naga Sarada Somanchi ◽  
Sri Rama R. Devi ◽  
Ravi Gugulothu

The present work deals with the results of the experimental investigations carried out on augmentation of turbulent flow heat transfer in a horizontal circular tube by means of tube inserts, with air as working fluid. Experiments were carried out initially for the plain tube (without tube inserts). The Nusselt number and friction factor obtained experimentally were validated against those obtained from theoretical correlations. Secondly experimental investigations using three kinds of tube inserts namely Rectangular bar with diverging conical strips, Rectangular bar with converging conical strips, Rectangular bar with alternate converging diverging conical strips were carried out to estimate the enhancement of heat transfer rate for air in the presence of inserts. The Reynolds number ranged from 8000 to 19000. In the presence of inserts, Nusselt number and pressure drop increased, overall enhancement ratio is calculated to determine the optimum geometry of the tube insert. Based on experimental investigations, it is observed that, the enhancement of heat transfer using Rectangular bar with converging and diverging conical strips is more effective compared to other inserts. Key words: Heat transfer, enhancement, turbulent flow, conical strip inserts, friction factor, pressure drop.


Sign in / Sign up

Export Citation Format

Share Document