Hybrid self-adaptive biobjective optimization of multiple robot scheduling problem for mixed-model assembly lines considering energy savings

Author(s):  
Binghai Zhou ◽  
Qianran Fei

With the wide application of robots in the material distribution process on the assembly lines, single robot scheduling cannot meet the actual production needs. However, the high degree of mechanization also brings about environmental problems. Therefore, this article aims to develop a scheduling methodology to accomplish material supply tasks using multiple robots with energy consumption consideration. Meanwhile, a targeted mathematical model to minimize total weighted penalty costs and total energy consumption is developed. Due to the NP-hard nature of the problem, an adaptive hybrid mutation population extremal optimization multi-objective algorithm based on uniform distribution selection is proposed to solve multi-objective problems. Furthermore, a new coding method for initialization is designed to optimize the whole iterative process. The performance of the proposed algorithm is evaluated by comparing with three benchmark multi-objective algorithms. Computational experiments are represented to prove the validity and feasibility of the proposed algorithm.

2012 ◽  
Vol 7 (4) ◽  
Author(s):  
A. Lazić ◽  
V. Larsson ◽  
Å. Nordenborg

The objective of this work is to decrease energy consumption of the aeration system at a mid-size conventional wastewater treatment plant in the south of Sweden where aeration consumes 44% of the total energy consumption of the plant. By designing an energy optimised aeration system (with aeration grids, blowers, controlling valves) and then operating it with a new aeration control system (dissolved oxygen cascade control and most open valve logic) one can save energy. The concept has been tested in full scale by comparing two treatment lines: a reference line (consisting of old fine bubble tube diffusers, old lobe blowers, simple DO control) with a test line (consisting of new Sanitaire Silver Series Low Pressure fine bubble diffusers, a new screw blower and the Flygt aeration control system). Energy savings with the new aeration system measured as Aeration Efficiency was 65%. Furthermore, 13% of the total energy consumption of the whole plant, or 21 000 €/year, could be saved when the tested line was operated with the new aeration system.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2166 ◽  
Author(s):  
Aniela Kaminska ◽  
Andrzej Ożadowicz

Energy used for lighting is one of the major components of total energy consumption in buildings. Nowadays, buildings have a great potential to reduce their energy consumption, but to achieve this purpose additional efforts are indispensable. In this study, the need for energy savings evaluation before the implementation of lighting control algorithms for a specified building is highlighted. Therefore, experimental tests have been carried out in a university building with laboratories and other rooms, equipped with KNX building automation system. A dimmable control strategy has been investigated, dependent on daylight illuminance. Moreover, a relationship between external and internal daylight illuminance levels has been evaluated as well. Based on the experimental results, the authors proposed a method for the rough estimation of electrical energy savings. Since, according to the EN 15232 standard, Building Automation and Control Systems (BACS) play an important role in buildings’ energy efficiency improvements, the BACS efficiency factors from this standard have been used to verify the experimental results presented in the paper. The potential to reduce energy consumption from lighting in non-residential buildings by 28% for offices and 24% for educational buildings has been confirmed, but its dependence on specific building parameters has been discussed as well.


Author(s):  
Mudassar Rauf ◽  
◽  
Mirza Jahanzaib ◽  
Muhammad Haris Aziz ◽  
◽  
...  

2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Salah M Alabani ◽  
Ibrahim H Tawil

The residential sector in Libya has grown over the past decade in the construction of residential buildings due to the increase in the population. Moreover, the increase in the level of income has contributed to the increase in the purchase of household appliances, which leads to increased demand for energy. Energy consumption in the household sector accounted for 31% of total energy consumption during 2010, and the share of air conditioners in this sector consumed 18.35%. To reduce energy consumption and improve energy efficiency in this sector, policies should be considered to apply energy efficiency standards and markers to household electrical appliances, as they are considered one of the most successful programs used in the world. Countries are implementing such programs to reduce energy consumption in the domestic sector. This paper presents the possibility of implementing such programs to introduce the importance of energy efficiency standards and labeling programs for home appliances in Libya. The calculations required to design such programs show the energy savings that can be achieved during cooling loads in the summer period of 4 months July, August, September). A strategic plan has been developed during 10-year (2020-2030) to estimate the expected savings of energy consumed and to identify possible obstacles and difficulties by gradually increasing the energy efficiency ratio for comestic air conditioners in two stages, from EER10 to EER11 in the first stage is then raised to EER12 as the second stage.


2021 ◽  
Vol 6 (2) ◽  
pp. 03-17
Author(s):  
Gazal Dandia ◽  
◽  
Pratheek Sudhakaran ◽  
Chaitali Basu ◽  
◽  
...  

Introduction: High energy consumption by buildings is a great threat to the environment and one of the major causes of climate change. With a population of 1.4 billion people and one of the fastest-growing economies in the world, India is extremely vital for the future of global energy markets. The energy demand for construction activities continues to rise and it is responsible for over one-third of global final energy consumption. Currently, buildings in India account for 35% of total energy consumption and the value is growing by 8% annually. Around 11% of total energy consumption are attributed to the commercial sector. Energy-efficient retrofitting of the built environments created in recent decades is a pressing urban challenge. Presently, most energy-efficient retrofit projects focus mainly on the engineering aspects. In this paper, we evaluate various retrofitting options, such as passive architectural interventions, active technological interventions, or a combination of both, to create the optimum result for the selected building. Methods: Based on a literature study and case examples, we identified various energy-efficient retrofit measures, and then examined and evaluated those as applied to the case study of Awas Bhawan (Rajasthan Housing Board Headquarters), Jaipur, India. For the evaluation, we developed a simulation model using EQuest for each energy measure and calculated the resultant energy savings. Then, based on the cost of implementation and the cost of energy saved, we calculated the payback period. Finally, an optimum retrofit solution was formulated with account for the payback period and ease of installation. Results and discussion: The detailed analysis of various energy-efficient retrofit measures as applied to the case study indicates that the most feasible options for retrofit resulting in optimum energy savings with short payback periods include passive architecture measures and equipment upgrades.


2021 ◽  
Author(s):  
A.M.C.K. Polgolla ◽  
◽  
H.M.D.P. Herath ◽  
M.D.A. Wickramasinghe ◽  
M.A. Wijewardane ◽  
...  

Inside buildings, heating, ventilation, and air conditioning systems are utilized to provide a comfortable environment. However, they account for a significant percentage of overall total energy consumption: in the United States, they account for about 50% of building final energy consumption and 20% of total energy consumption. [1]. The installation of a heat exchanger between the exhaust and fresh air streams is critical, owing to the significant energy savings. [2], [3]. Thermal wheels have recently gotten a lot of attention because of their high efficiency and low-pressure loss when compared to other energy recovery solutions [4]. The goal of this research is to give a comprehensive study and optimization of Thermal wheel design, with the goal of enhancing sensible effectiveness while reducing pressure loss based on channel shape.


Buildings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 633
Author(s):  
Mirzhan Kaderzhanov ◽  
Shazim Ali Memon ◽  
Assemgul Saurbayeva ◽  
Jong R. Kim

Nowadays, the residential sector of Kazakhstan accounts for about 30% of the total energy consumption. Therefore, it is essential to analyze the energy estimation model for residential buildings in Kazakhstan so as to reduce energy consumption. This research is aimed to develop the Overall Thermal Transfer Value (OTTV) based Building Energy Simulation Model (BESM) for the reduction of energy consumption through the envelope of residential buildings in seven cities of Kazakhstan. A brute force optimization method was adopted to obtain the optimal envelope configuration varying window-to-wall ratio (WWR), the angle of a pitched roof, the depth of the overhang shading system, the thermal conductivity, and the thicknesses of wall composition materials. In addition, orientation-related analyses of the optimized cases were conducted. Finally, the economic evaluation of the base and optimized cases were presented. The results showed that an average energy reduction for heating was 6156.8 kWh, while for cooling it was almost 1912.17 kWh. The heating and cooling energy savings were 16.59% and 16.69%, respectively. The frontage of the building model directed towards the south in the cold season and north in the hot season demonstrated around 21% and 32% of energy reduction, respectively. The energy cost savings varied between 9657 to 119,221 ₸ for heating, 9622 to 36,088 ₸ for cooling.


Sign in / Sign up

Export Citation Format

Share Document