New thiazacridine agents: Synthesis, physical and chemical characterization, and in vitro anticancer evaluation

2016 ◽  
Vol 36 (10) ◽  
pp. 1059-1070 ◽  
Author(s):  
MBO Chagas ◽  
NCC Cordeiro ◽  
KMR Marques ◽  
MG Rocha Pitta ◽  
MJBM Rêgo ◽  
...  

A series of new thiazacridine agents were synthesized and evaluated as antitumor agents, in terms of not only their cytotoxicity but also their selectivity. The cytotoxicity assay confirmed that all compounds showed cytotoxic activity and selectivity. The new compound, 3-acridin-9-ylmethyl-5-(5-bromo-1 H-indol-3-ylmethylene)-thiazolidine-2,4-dione (LPSF/AA29 – 7a), proved to be the most promising compound as it presents lower half-maximal inhibitory concentration (IC50) values (ranging from 0.25 to 68.03 µM) depending on cell lineage. In HepG2 cells, the lowest IC50 value was exhibited by 3-acridin-9-ylmethyl-5-(4-piperidin-1-yl-benzylidene)-thiazolidine-2,4-dione (LPSF/AA36 – 7b; 46.95 µM). None of the synthesized compounds showed cytotoxic activity against normal cells (IC50 > 100 µM). The mechanism of death induction and cell cycle effects was also evaluated. Flow cytometric analysis revealed that the compounds LPSF/AA29 – 7a and LPSF/AA36 – 7b significantly increased the percentage of apoptotic cells and induced G2/M arrest in the cell cycle progression. Therefore, these new thiazacridine derivatives constitute promising antitumor agents whose cytotoxicity and selectivity properties indicate they have potential to contribute to or serve as a basis for the development of new cancer drugs in the future.

2018 ◽  
Vol 63 (2) ◽  
pp. e00904-18 ◽  
Author(s):  
Celia Fernández-Rubio ◽  
Esther Larrea ◽  
José Peña Guerrero ◽  
Eduardo Sesma Herrero ◽  
Iñigo Gamboa ◽  
...  

ABSTRACTConventional chemotherapy against leishmaniasis includes agents exhibiting considerable toxicity. In addition, reports of drug resistance are not uncommon. Thus, safe and effective therapies are urgently needed. Isoselenocyanate compounds have recently been identified with potential antitumor activity. It is well known that some antitumor agents demonstrate effects againstLeishmania. In this study, thein vitroleishmanicidal activities of several organo-selenium and organo-sulfur compounds were tested againstLeishmania majorandLeishmania amazonensisparasites, using promastigotes and intracellular amastigote forms. The cytotoxicity of these agents was measured in murine peritoneal macrophages and their selectivity indexes were calculated. One of the tested compounds, the isoselenocyanate derivative NISC-6, showed selectivity indexes 2- and 10-fold higher than those of the reference drug amphotericin B when evaluated inL. amazonensisandL. major, respectively. The American strain (L. amazonensis) was less sensitive to NISC-6 thanL. major, showing a trend similar to that observed previously for amphotericin B. In addition, we also observed that NISC-6 significantly reduced the number of amastigotes per infected macrophage. On the other hand, we showed that NISC-6 decreases expression levels ofLeishmaniagenes involved in the cell cycle, such astopoisomerase-2(TOP-2),PCNA, andMCM4, therefore contributing to its leishmanicidal activity. The effect of this compound on cell cycle progression was confirmed by flow cytometry. We observed a significant increase of cells in the G1phase and a dramatic reduction of cells in the S phase compared to untreated cells. Altogether, our data suggest that the isoselenocyanate NISC-6 may be a promising candidate for new drug development against leishmaniasis.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi94-vi94
Author(s):  
Taylor Dismuke ◽  
Chaemin Lim ◽  
Timothy Gershon

Abstract CDK4/6 inhibition is a promising therapy for medulloblastoma, one of the most common malignant pediatric brain tumors. To improve pharmacokinetics, we developed a polyoxazoline nanoparticle-encapsulated formulation of the FDA-approved CDK4/6 inhibitor palbociclib (POx-palbo). We then administered POx-palbo to transgenic medulloblastoma-prone GFAP-Cre/SmoM2 mice, to determine the efficacy and mechanisms of action and resistance. We found that POx-palbo slowed tumor progression, but consistently failed to be curative. Further analysis showed that while CDK4/6 inhibition acutely blocked G1 cells from re-entering the cell cycle, this effect wore off within hours of drug administration. However, flow cytometric analysis of EdU uptake hours after palbociclib demonstrated aberrant S-phase with reduced rate of DNA synthesis. This POx-palbociclib-induced alteration of S-phase progression seems to remain true at later time points even when we observed that palbociclib G1/S inhibition began to decrease. Based on these data, we propose that the combinational therapy of POx-palbociclib and S-phase targeting agents will further improve treatment. Faulty tumor cell cycle progression in the presence of Pox-palbociclib may give increased window to target the S-phase for irreversible cell-cycle exit.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5485-5485
Author(s):  
Hesham Hassan ◽  
Michelle Varney ◽  
Bhavana J Dave ◽  
Rakesh K Singh

Abstract Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma (NHL).Despite long-term remission achieved with R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone), relapse occurs in almost one third of the patients. Therefore, there is a need for novel therapeutic targets that are relevant to DLBCL pathogenesis. TP73 gene is a member of the p53 tumor suppressor gene family, which is critical in the regulation of cell cycle and apoptosis. TP73 is located in distal 1p36 chromosomal region that is commonly disrupted in DLBCL. Our previous studies had shown that the differential expression of p73 isoforms correlates with proliferation and apoptosis in DLBCL patient specimens. Furthermore, the experimental modulation of p73 isoforms using expression vectors or siRNA modulates the behavior and regulate the chemotherapeutic response of DLBCL cell line models. Diclofenac is NSAID that has been shown to increase p73 activity, substitute p53 activity and suppress the growth of neuroblastoma. In the present study, we investigated whether diclofenac modulates DLBCL apoptosis and cell cycle progression independent of p53 status. We used cell line models of the GCB-DLBCL (DHL-16 and OCI-Ly7) and the ABC-DLBCL (OCI-Ly3 and Pfeiffer). Because OCI-Ly7 and Pfeiffer have a mutant p53, these cells can model the activity of diclofenac in the presence of mutant p53. We used MTT assay to study the response of the DLBCL cells to various concentrations of diclofenac (25, 50, 100, 150, 200, 250 µM) and at different time points (24, 48, and 72 hours). To decipher the biological effects of diclofenac treatment on DLBCL cells Hema-3 staining was done to visualize morphologic evidence of cell death; propidium iodide-based flow cytometric analysis for cell cycle progression; BrdU incorporation for proliferation; and Annexin-V-Flous flow cytometric analysis for apoptosis. Molecularly, Caspase-GLO assay was used for evaluation of Caspase-3, 7, 8 activity and qRT-PCR was used to estimate the effect of diclofenac treatment on p73 and the p53 family transcriptional target regulating cell cycle (p21) and apoptosis (PUMA, NOXA, BIM, and CD95). Mann-Whitney (for two groups) or ANOVA (for more than two groups) analyses were used to determine the statistical significance for comparisons between different treatment groups. Diclofenac treatment displayed a concentration and duration-dependent suppressive cell proliferative activity against a panel of DLBCL cells independent of p53 status including experimental therapy-resistant models. Diclofenac treatment resulted in cell cycle arrest mainly at the G2/M phase, decreased proliferation, and caused profound cell death (mainly apoptosis and possibly necroptosis). Molecularly, diclofenac treatment was associated with increased activity of caspases- 3, -7 and -8. Increased p53 pathway activity as suggested by induction of expression of a panel of p53 transcriptional targets including the cell cycle regulatory molecule p21 and the pro-apoptotic molecules, PUMA, NOXA, BIM, and CD95, was detected in diclofenac treated DLBCL cells. More importantly diclofenac treatment was associated with enhanced expression of the pro-apoptotic isoforms of the p53 homologue, TAp73. Together, our data demonstrate that clinically non-toxic doses of diclofenac treatment, induces apoptosis and cell cycle arrest of both GCB and ABC-DLBCL cells independent of p53 status and is associated with increased expression of the p73 homologue TAp73. These data highlight the potential of diclofenac as a novel adjuvant therapy in DLBCL. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5216-5216
Author(s):  
Laura M Desbourdes ◽  
Adam J Guess ◽  
Suheyla Hasgur ◽  
Kathleen M Overholt ◽  
Minjun Yu ◽  
...  

Abstract Introduction The 5-year survival for patients with acute myeloid leukemia (AML) has stagnated for over two decades at about 60% for children, 40% for young adults, and <15% for elderly patients. While most patients achieve remission, approximately 50% will relapse which is generally attributed to the persistence of leukemic stem cells. Interferon α (IFNα) is an effective therapy for patients with AML due to multiple mechanisms of action. However, high serum levels are associated with many adverse effects. In this proof-of-concept study, we used engineered mesenchymal stem/stromal cells (MSC) to deliver high concentrations of IFNα locally to an AML chloroma, potentially diminishing the poorly tolerated systemic side-effects. Methods Bone marrow MSCs from C57BL/6 mouse were isolated and transduced with a lentiviral vector expressing murine IFNα (IFNα-MSCs) and/or GFP (GFP MSCs). After measuring IFNα secretion by ELISA and confirming activity by the induction of the MHC I expression on the transduced cells, the anti-AML activity of these transduced MSCs was assessed by co-culture with the C57BL/6 AML cell line c1498 which expresses DsRed and firefly luciferase (FFluc). Apoptotic cell frequencies and cell cycle phase distributions of leukemia cells with or without MSCs were assessed by flow cytometry. The in vivo validation has been performed by subcutaneous injection of c1498 cells (chloroma) with or without GFP MSCs or IFNα MSCs in C57BL/6 mice. Tumor growth was monitored by bioluminescence imaging every 3 or 4 days. Results Flow cytometric analysis and ELISA confirmed the secretion of bio-active of IFNα by transduced MSCs (41.5 ng/1E06 MSCs/24h). In co-cultures, the presence of IFNα MSCs at the ratio 100:1 (c1498: MSC) significantly decreased the population of c1498 cells mainly by inducing apoptosis compared to MSC-free or GFP MSC co-cultures while no effect was observed on cell cycle distribution. The pro-apoptotic effect of IFNα MSCs was then investigated in vivo by subcutaneous injection of c1498 cells with or without MSCs (ratio 10:1) in C57BL/6 mice.The presence of IFNα MSCs significantly decreased leukemic cell mass as shown by the bioluminescence of the DsRed+ FFLuc+ c1498 cells. This result was confirmed by flow cytometric analysis of the percentage of DsRed + cells in the chloroma. Conclusions This study shows that IFNα MSCs present a strong anti-leukemic effect in vitro and in vivo promoting apoptosis and thus decreasing the leukemic burden. Further experiments will focus on a potential synergetic effect with Cytarabine treatment and a preclinical study using human IFNα MSCs in a xenograft murine model. Disclosures No relevant conflicts of interest to declare.


1986 ◽  
Vol 34 (12) ◽  
pp. 1651-1658 ◽  
Author(s):  
J D Hare

A previous study (Hare JD, Bahler DW: J Histochem Cytochem 34:215, 1986) has shown that the flow cytometric analysis of acridine-orange-stained Plasmodium falciparum growing in vitro generates a complex two-color display, regions of which correlate with the major morphological stages. In this report, four cell cycle compartments (A-D) are defined by characteristic ratios of red and green fluorescence of cells distributed throughout the erythrocytic cycle as well as by the differential effects of several metabolic inhibitors. The primary characteristic of cells in compartment A is the significant increase in red fluorescence. Inhibition of DNA synthesis by either aphidicolin or hydroxyurea causes the accumulation of cells at the interface between compartments A and B, whereas n-butyrate prevents cells in compartment A from reaching the A-B interface. Cells in compartment A display a small increase in green fluorescence which is independent of DNA synthesis but is enhanced by n-butyrate treatment. Cells in compartment B display a continued increase in red fluorescence coupled with a significant increase in green fluorescence, reflecting the onset of DNA synthesis in compartment B. The transition to compartment C is more abrupt and is associated with a marked increase in green fluorescence and little increase in red fluorescence. Compartment D is characterized by an increase in red fluorescence and a continued rise in green fluorescence. It is postulated that these discontinuities in the two-color display reflect not only changes in the rates of RNA and DNA synthesis but also decondensation of parasite chromatin in compartment A as the organism prepares for DNA synthesis, and re-condensation in compartment D as the newly replicated chromatin prepares for segregation into merozoites. The method described promises to provide a sensitive and rapid technique to study the effects of various factors on the growth cycle of the parasite.


Parasitology ◽  
1989 ◽  
Vol 99 (3) ◽  
pp. 333-339 ◽  
Author(s):  
G. F. Hoyne ◽  
P. F.L. Boreham ◽  
P. G. Parsons ◽  
C. Ward ◽  
B. Biggs

SummaryFlow cytometric analysis of the binucleated protozoan parasiteGiardia intestinalisgave DNA histograms with a broad Gl peak and a definable G2 + M peak with twice the DNA content of Gl. Twenty-four hour treatment with metronidazole arrested cell cycle progression of susceptible trophozoites in the G2 + M phase, but had no effect, even at toxic doses, on the DNA histogram of a line selected for resistance to metronidazole. Furazolidone was inhibitory to both stocks, causing an arrest in the S and G2 + M phases. Inhibitors of the mammalian cell cycle were also tested. Hydroxyurea, which blocks mammalian cells in Gl/S, and razoxane, which blocks in G2 + M, arrested trophozoites in the G2 + M phase whereas colchicine and gamma-irradiation had little or no effect on the cell cycle ofG. intestinalis. These results suggest that the cell cycle ofG. intestinalismay be controlled in a different manner from mammalian cells.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Chen-Hua Dong ◽  
Tao Jiang ◽  
Hang Yin ◽  
Hu Song ◽  
Yi Zhang ◽  
...  

AbstractColorectal cancer is the second common cause of death worldwide. Lamin B2 (LMNB2) is involved in chromatin remodeling and the rupture and reorganization of nuclear membrane during mitosis, which is necessary for eukaryotic cell proliferation. However, the role of LMNB2 in colorectal cancer (CRC) is poorly understood. This study explored the biological functions of LMNB2 in the progression of colorectal cancer and explored the possible molecular mechanisms. We found that LMNB2 was significantly upregulated in primary colorectal cancer tissues and cell lines, compared with paired non-cancerous tissues and normal colorectal epithelium. The high expression of LMNB2 in colorectal cancer tissues is significantly related to the clinicopathological characteristics of the patients and the shorter overall and disease-free cumulative survival. Functional analysis, including CCK8 cell proliferation test, EdU proliferation test, colony formation analysis, nude mouse xenograft, cell cycle, and apoptosis analysis showed that LMNB2 significantly promotes cell proliferation by promoting cell cycle progression in vivo and in vitro. In addition, gene set enrichment analysis, luciferase report analysis, and CHIP analysis showed that LMNB2 promotes cell proliferation by regulating the p21 promoter, whereas LMNB2 has no effect on cell apoptosis. In summary, these findings not only indicate that LMNB2 promotes the proliferation of colorectal cancer by regulating p21-mediated cell cycle progression, but also suggest the potential value of LMNB2 as a clinical prognostic marker and molecular therapy target.


Sign in / Sign up

Export Citation Format

Share Document