Assessment of the biochemical effects of percutaneous exposure of sulphur mustard in an in vitro human skin system

1996 ◽  
Vol 15 (3) ◽  
pp. 237-244 ◽  
Author(s):  
CD Lindsay ◽  
P. Rice

1 Sulphur mustard (HD) is a potent chemical warfare agent which causes incapacitating blisters on human skin. There is no specific pretreatment nor therapy against this agent and the mechanism of dermo-epidermal cleavage is unclear. The aim of this study was to use a human skin explant system to determine the consequences of percuta neous exposure to HD. 2 Increased activities of serine proteases associated with blistering disorders in humans were detected from human skin explants after exposure to HD. The most consistent response and the highest protease activities measured were found for trypsin. This class of enzyme is therefore implicated in the dermo-epidermal separation which is associated with blistering in humans following exposure to HD. 3 An inflammatory response was observed in the skin explants exposed to HD. At low doses of HD it was characterised by the presence of neutrophils in the papillary dermis, culminating in the infiltration of the epidermis by these inflammatory cells at higher concen trations of HD. A variety of other histopathological changes in the explants was found such as focal dermo- epidermal separation, nuclear pyknosis and perinuclear vacuolation. 4 The study indicates that full thickness human skin explants can be used to investigate various aspects of the possible pathogenesis of HD-induced skin damage, in cluding the associated inflammatory response.

Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 227 ◽  
Author(s):  
Maryam Jahanshahi ◽  
David Hamdi ◽  
Brent Godau ◽  
Ehsan Samiei ◽  
Carla Sanchez-Lafuente ◽  
...  

Wound infection is a major clinical challenge that can significantly delay the healing process, can create pain, and requires prolonged hospital stays. Pre-clinical research to evaluate new drugs normally involves animals. However, ethical concerns, cost, and the challenges associated with interspecies variation remain major obstacles. Tissue engineering enables the development of in vitro human skin models for drug testing. However, existing engineered skin models are representative of healthy human skin and its normal functions. This paper presents a functional infected epidermis model that consists of a multilayer epidermis structure formed at an air-liquid interface on a hydrogel matrix and a three-dimensionally (3D) printed vascular-like network. The function of the engineered epidermis is evaluated by the expression of the terminal differentiation marker, filaggrin, and the barrier function of the epidermis model using the electrical resistance and permeability across the epidermal layer. The results showed that the multilayer structure enhances the electrical resistance by 40% and decreased the drug permeation by 16.9% in the epidermis model compared to the monolayer cell culture on gelatin. We infect the model with Escherichia coli to study the inflammatory response of keratinocytes by measuring the expression level of pro-inflammatory cytokines (interleukin 1 beta and tumor necrosis factor alpha). After 24 h of exposure to Escherichia coli, the level of IL-1β and TNF-α in control samples were 125 ± 78 and 920 ± 187 pg/mL respectively, while in infected samples, they were 1429 ± 101 and 2155.5 ± 279 pg/mL respectively. However, in ciprofloxacin-treated samples the levels of IL-1β and TNF-α without significant difference with respect to the control reached to 246 ± 87 and 1141.5 ± 97 pg/mL respectively. The robust fabrication procedure and functionality of this model suggest that the model has great potential for modeling wound infections and drug testing.


1988 ◽  
Vol 7 (1) ◽  
pp. 15-19 ◽  
Author(s):  
J.G. Smith

All reported cases of paraquat poisoning by absorption through the skin are briefly reviewed. It is concluded that, while paraquat cannot be absorbed significantly through intact human skin, damage to the skin, either by paraquat itself or by other means, will permit greater systemic absorption and possibly poisoning. The lowest known concentration of paraquat to result in fatal poisoning through the skin is 5 g/l. Animal experiments with paraquat are also reviewed. The fact that the reported lethal dermal dose of paraquat in rats is slightly less than the oral dose is probably due to the lack of head restraint on the rats in the dermal dosing experiments. In vivo and in vitro tests on human skin at concentrations of 9 g/l and 5 g/l did not result in significant absorption of paraquat through the skin but in these experiments the skin was intact.


2021 ◽  
Author(s):  
He Tong ◽  
Li Wang ◽  
Kefan Zhang ◽  
Jing Shi ◽  
yongshuai Wu ◽  
...  

Abstract BackgroundThe phagocytic S100 protein, which mediates inflammatory responses and recruits inflammatory cells to sites of tissue damage, has long been known to be expressed in cells of myeloid origin. S100A6 belongs to the A group of the S100 protein family of Ca2+-binding proteins. Currently, the mechanism by which S100A6 mediates the inflammatory response and recruits inflammatory cells to the tissue injury site is unknown.MethodsA mouse model of carbon tetrachloride (CCl4)-induced acute liver injury (ALI) was established, and the transcriptomes of postinjury 2d and 5d liver tissues were sequenced. Enzyme-linked immunosorbent assay was used to determine the expression of inflammatory factors (TNF-α, IL-1β, IL-6, and IL-8) in the supernatant of the liver. Immunohistochemical analysis confirmed the expression of S100A6 in the liver cells. In vitro experiments proved the pro-inflammatory function of S100A6, and western blotting (WB) showed that the pathways were activated. The transwell experiment showed the infiltration of mononuclear/macrophages.ResultsWe found that S100A6 is highly expressed in liver cells during the most severe period of ALI, suggesting that it acts as an endogenous danger signal and has a pro-inflammatory function. In vitro, the mouse S100A6 recombinant protein was used to stimulate liver Kupffer cells to promote the secretion of TNF-α, IL-1β, IL-6, and IL-8. Further mechanistic experiments revealed that S100A6 acts as an endogenous danger signal to activate p-P38 and p-JNK downstream of the TLR4 and P65 pathways. Similarly, transcriptome data showed that S100A6 can activate the inflammatory response in Kuffer cells. WB revealed that S100A6 had no significant effect on cell apoptosis. To continue to explore the mechanism of monocyte/macrophage infiltration, we found that TNF-α stimulates liver cells as the main source of CCL2. TNF-α can initiate the p-P38 and p-JNK pathways of liver cells to produce CCL2, thereby recruiting the infiltration of mononuclear/macrophages. ConclusionsTaken together, S100A6 is an endogenous danger signal that mediates inflammatory responses and recruits inflammatory cells to sites of tissue damage.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1371
Author(s):  
Claudia Mazio ◽  
Laura S. Scognamiglio ◽  
Rossella De Cegli ◽  
Luis J. V. Galietta ◽  
Diego Di Bernardo ◽  
...  

Cystic fibrosis is characterized by lung dysfunction involving mucus hypersecretion, bacterial infections, and inflammatory response. Inflammation triggers pro-fibrotic signals that compromise lung structure and function. At present, several in vitro cystic fibrosis models have been developed to study epithelial dysfunction but none of these focuses on stromal alterations. Here we show a new cystic fibrosis 3D stromal lung model made up of primary fibroblasts embedded in their own extracellular matrix and investigate its morphological and transcriptomic features. Cystic fibrosis fibroblasts showed a high proliferation rate and produced an abundant and chaotic matrix with increased protein content and elastic modulus. More interesting, they had enhanced pro-fibrotic markers and genes involved in epithelial function and inflammatory response. In conclusion, our study reveals that cystic fibrosis fibroblasts maintain in vitro an activated pro-fibrotic state. This abnormality may play in vivo a role in the modulation of epithelial and inflammatory cell behavior and lung remodeling. We argue that the proposed bioengineered model may provide new insights on epithelial/stromal/inflammatory cells crosstalk in cystic fibrosis, paving the way for novel therapeutic strategies.


2011 ◽  
Vol 304 (2) ◽  
pp. 145-153 ◽  
Author(s):  
A. Peramo ◽  
S. E. Feinberg ◽  
C. L. Marcelo
Keyword(s):  

2019 ◽  
Vol 40 (2) ◽  
pp. 313-326 ◽  
Author(s):  
Camille Géniès ◽  
Carine Jacques‐Jamin ◽  
Hélène Duplan ◽  
Helga Rothe ◽  
Corie Ellison ◽  
...  

2002 ◽  
Vol 46 (10) ◽  
pp. 3175-3179
Author(s):  
Peter G. Sohnle ◽  
Beth L. Hahn

ABSTRACT Fluconazole is an azole agent with primarily fungistatic activity in standard in vitro susceptibility tests. The present study was undertaken to develop a diffusion chamber model system in mice in order to study the in vivo effects of prolonged fluconazole treatment on Candida albicans. Chambers containing 100 C. albicans yeast cells were implanted subcutaneously on the flanks of C57BL/6 mice and were then retrieved 6 or 14 weeks later (after fluconazole treatment for 4 or 12 weeks, respectively). Leukocyte counts demonstrated that implantation of the chambers did elicit an inflammatory response but that only small numbers of inflammatory cells were able to enter the chamber interior. Treatment with fluconazole at 10 mg/kg of body weight/day for 12 weeks not only reduced the numbers of viable organisms within the chambers compared to those in untreated mice (mean ± standard deviation of log10 CFU of 0.7 ± 1.2 versus 2.3 ± 2.0; P < 0.001 by the Bonferroni test) but also increased the numbers of chambers that became sterile over the treatment period (14 of 16 versus 6 of 19; P = 0.0009 by the chi-square test). However, treatment for only 4 weeks had minimal effects on the numbers of chamber CFU, and none of the chambers became sterile during this period. Distribution of retrieved organisms between interior fluid and the chamber filters was approximately equal in all the treatment groups. This model system appears to be useful for evaluating the effects of antifungal drugs over prolonged periods in vivo. Its use in the present study demonstrates that fluconazole can increase the rate of sterilization of C. albicans foci that are protected from the host's inflammatory response.


1999 ◽  
Vol 189 (1) ◽  
pp. 179-186 ◽  
Author(s):  
Raphael Clynes ◽  
Jay S. Maizes ◽  
Rodolphe Guinamard ◽  
Masao Ono ◽  
Toshiyuki Takai ◽  
...  

Autoantibodies and immune complexes are major pathogenic factors in autoimmune injury, responsible for initiation of the inflammatory cascade and its resulting tissue damage. This activation results from the interaction of immunoglobulin (Ig)G Fc receptors containing an activation motif (ITAM) with immune complexes (ICs) and cytotoxic autoantibodies which initiates and propagates an inflammatory response. In vitro, this pathway can be interrupted by coligation to FcγRIIB, an IgG Fc receptor containing an inhibitory motif (ITIM). In this report, we describe the in vivo consequences of FcγRII deficiency in the inflammatory response using a mouse model of IC alveolitis. At subthreshold concentrations of ICs that fail to elicit inflammatory responses in wild-type mice, FcγRII-deficient mice developed robust inflammatory responses characterized by increased hemorrhage, edema, and neutrophil infiltration. Bronchoalveolar fluids from FcγRII−/− stimulated mice contain higher levels of tumor necrosis factor and chemotactic activity, suggesting that FcγRII deficiency lowers the threshold of IC stimulation of resident cells such as the alveolar macrophage. In contrast, complement- and complement receptor–deficient mice develop normal inflammatory responses to suprathreshold levels of ICs, while FcRγ−/− mice are completely protected from inflammatory injury. An inhibitory role for FcγRII on macrophages is demonstrated by analysis of FcγRII−/− macrophages which show greater phagocytic and calcium flux responses upon FcγRIII engagement. These data reveal contrasting roles for the cellular receptors for IgG on inflammatory cells, providing a regulatory mechanism for setting thresholds for IC sensitivity based on the ratio of ITIM to ITAM FcγR expression. Exploiting the FcγRII inhibitory pathway could thus provide a new therapeutic approach for modulating antibody-triggered inflammation.


2015 ◽  
Vol 36 (42) ◽  
pp. 2909-2919 ◽  
Author(s):  
Maarten F Corsten ◽  
Ward Heggermont ◽  
Anna-Pia Papageorgiou ◽  
Sophie Deckx ◽  
Aloys Tijsma ◽  
...  

Abstract Aims Viral myocarditis (VM) is an important cause of heart failure and sudden cardiac death in young healthy adults; it is also an aetiological precursor of dilated cardiomyopathy. We explored the role of the miR-221/-222 family that is up-regulated in VM. Methods and results Here, we show that microRNA-221 (miR-221) and miR-222 levels are significantly elevated during acute VM caused by Coxsackievirus B3 (CVB3). Both miRs are expressed by different cardiac cells and by infiltrating inflammatory cells, but their up-regulation upon myocarditis is mostly exclusive for the cardiomyocyte. Systemic inhibition of miR-221/-222 in mice increased cardiac viral load, prolonged the viraemic state, and strongly aggravated cardiac injury and inflammation. Similarly, in vitro, overexpression of miR-221 and miR-222 inhibited enteroviral replication, whereas knockdown of this miR-cluster augmented viral replication. We identified and confirmed a number of miR-221/-222 targets that co-orchestrate the increased viral replication and inflammation, including ETS1/2, IRF2, BCL2L11, TOX, BMF, and CXCL12. In vitro inhibition of IRF2, TOX, or CXCL12 in cardiomyocytes significantly dampened their inflammatory response to CVB3 infection, confirming the functionality of these targets in VM and highlighting the importance of miR-221/-222 as regulators of the cardiac response to VM. Conclusions The miR-221/-222 cluster orchestrates the antiviral and inflammatory immune response to viral infection of the heart. Its inhibition increases viral load, inflammation, and overall cardiac injury upon VM.


2020 ◽  
Vol 11 ◽  
Author(s):  
Daniella Bianchi Reis Insuela ◽  
Maximiliano Ruben Ferrero ◽  
Diego de Sá Coutinho ◽  
Marco Aurélio Martins ◽  
Vinicius Frias Carvalho

Asthma represents one of the leading chronic diseases worldwide and causes a high global burden of death and disability. In asthmatic patients, the exacerbation and chronification of the inflammatory response are often related to a failure in the resolution phase of inflammation. We reviewed the role of the main arachidonic acid (AA) specialized pro-resolving mediators (SPMs) in the resolution of chronic lung inflammation of asthmatics. AA is metabolized by two classes of enzymes, cyclooxygenases (COX), which produce prostaglandins (PGs) and thromboxanes, and lypoxygenases (LOX), which form leukotrienes and lipoxins (LXs). In asthma, two primary pro-resolving derived mediators from COXs are PGE2 and the cyclopentenone prostaglandin15-Deoxy-Delta-12,14-PGJ2 (15d-PGJ2) while from LOXs are the LXA4 and LXB4. In different models of asthma, PGE2, 15d-PGJ2, and LXs reduced lung inflammation and remodeling. Furthermore, these SPMs inhibited chemotaxis and function of several inflammatory cells involved in asthma pathogenesis, such as eosinophils, and presented an antiremodeling effect in airway epithelial, smooth muscle cells and fibroblasts in vitro. In addition, PGE2, 15d-PGJ2, and LXs are all able to induce macrophage reprogramming to an alternative M2 pro-resolving phenotype in vitro and in vivo. Although PGE2 and LXA4 showed some beneficial effects in asthmatic patients, there are limitations to their clinical use, since PGE2 caused side effects, while LXA4 presented low stability. Therefore, despite the strong evidence that these AA-derived SPMs induce resolution of both inflammatory response and tissue remodeling in asthma, safer and more stable analogs must be developed for further clinical investigation of their application in asthma treatment.


Sign in / Sign up

Export Citation Format

Share Document