scholarly journals Identification and In Vitro Expansion of Buccal Epithelial Cells

2018 ◽  
Vol 27 (6) ◽  
pp. 957-966
Author(s):  
Soraya Rasi Ghaemi ◽  
Bahman Delalat ◽  
Frances J. Harding ◽  
Yazad D. Irani ◽  
Keryn A. Williams ◽  
...  

Ex vivo-expanded buccal mucosal epithelial (BME) cell transplantation has been used to reconstruct the ocular surface. Methods for enrichment and maintenance of BME progenitor cells in ex vivo cultures may improve the outcome of BME cell transplantation. However, the parameter of cell seeding density in this context has largely been neglected. This study investigates how varying cell seeding density influences BME cell proliferation and differentiation on tissue culture polystyrene (TCPS). The highest cell proliferation activity was seen when cells were seeded at 5×104 cells/cm2. Both below and above this density, the cell proliferation rate decreased sharply. Differential immunofluorescence analysis of surface markers associated with the BME progenitor cell population (p63, CK19, and ABCG2), the differentiated cell marker CK10 and connexin 50 (Cx50) revealed that the initial cell seeding density also significantly affected the progenitor cell marker expression profile. Hence, this study demonstrates that seeding density has a profound effect on the proliferation and differentiation of BME stem cells in vitro, and this is relevant to downstream cell therapy applications.

1998 ◽  
Vol 76 (6) ◽  
pp. 957-969 ◽  
Author(s):  
Jean-Noël Freund ◽  
Claire Domon-Dell ◽  
Michèle Kedinger ◽  
Isabelle Duluc

The past years have witnessed an increasing number of reports relative to homeobox genes in endoderm-derived tissues. In this review, we focus on the caudal-related Cdx-1 and Cdx-2 homeobox genes to give an overview of the in vivo, in vitro, and ex vivo approaches that emphasize their primary role in intestinal development and in the control of intestinal cell proliferation, differentiation, and identity. The participation of these genes in colon tumorigenesis and their identification as important actors of the oncogenic process are also discussed.Key words: caudal, epithelial cell proliferation and differentiation, cancer.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 165
Author(s):  
Gulden Akcay ◽  
Regina Luttge

Over the past decade, hydrogels have shown great potential for mimicking three- dimensional (3D) brain architectures in vitro due to their biocompatibility, biodegradability, and wide range of tunable mechanical properties. To better comprehend in vitro human brain models and the mechanotransduction processes, we generated a 3D hydrogel model by casting photo-polymerized gelatin methacryloyl (GelMA) in comparison to poly (ethylene glycol) diacrylate (PEGDA) atop of SH-SY5Y neuroblastoma cells seeded with 150,000 cells/cm2 according to our previous experience in a microliter-sized polydimethylsiloxane (PDMS) ring serving for confinement. 3D SH-SY5Y neuroblastoma cells in GelMA demonstrated an elongated, branched, and spreading morphology resembling neurons, while the cell survival in cast PEGDA was not supported. Confocal z-stack microscopy confirmed our hypothesis that stiff-to-soft material transitions promoted neuronal migration into the third dimension. Unfortunately, large cell aggregates were also observed. A subsequent cell seeding density study revealed a seeding cell density above 10,000 cells/cm2 started the formation of cell aggregates, and below 1500 cells/cm2 cells still appeared as single cells on day 6. These results allowed us to conclude that the optimum cell seeding density might be between 1500 and 5000 cells/cm2. This type of hydrogel construct is suitable to design a more advanced layered mechanotransduction model toward 3D microfluidic brain-on-a-chip applications.


2021 ◽  
Author(s):  
Udochukwu C Obodo ◽  
Timothy R O'Connor

Electronic cigarettes (e-cigs) have a strong foothold in the marketplace as a product to replace tobacco cigarette usage. Despite many researchers investigating the use of e-cigs and possible health issues, there is still controversy concerning how to evaluate and use e-cig condensates. Therefore, to identify factors that influence in vitro e-cig studies, we examined parameters that can impact experimental outcomes. We generated high wattage e-cig aerosol condensate (ECAC) to determine reproducible conditions to evaluate ECAC with respect to cellular survival. Cytotoxicity of ECAC was independent of serum conditions. However, cytotoxicity of ECAC is altered by treatment duration and by physical factors, including cell seeding density and volume of ECAC used. In addition, interactions between ECAC components and cells, as well as the culture vessel surface, diminish the bioavailability of ECAC components in vitro and altered the results obtained. Moreover, the cell seeding density changes reactive oxygen species production in response to ECAC exposure. Our data indicated that normalized ECAC doses (ECAC weight per cell) better reflect the toxicity of ECAC than nominal doses (ECAC percentage). These results provide factors for researchers to consider in the design of in vitro experiments using ECAC.


2013 ◽  
Vol 25 (4) ◽  
pp. 644-649 ◽  
Author(s):  
Takahisa Anada ◽  
◽  
Osamu Suzuki

Cartilage self-repair is limited due to a lack of blood supply and the low mitosis rate of chondrocytes. A tissue engineering approach using cells and biomaterials has the potential to treat cartilage injury. Threedimensional cellular aggregates are an excellent model for mimicking condensation and chondrogenic differentiation in vitro. We developed a technique for constructing spheroids utilizing a polydimethylsiloxane (PDMS)-based culture chip. The objective of this study is to determine how the initial cell density on a culture chip affects the chondrogenic ATDC5 cell differentiation. We demonstrate how culture chips having arrays of multicavities are able to generate high numbers of uniform spheroids rapidly and simultaneously with narrow size distribution. Spheroids are collected easily and noninvasively. Higher cell seeding density on the culture chip enhances chondrogenic cell differentiation. These results suggest the usefulness of this chip in engineering 3D cellular constructs with high functionality for tissue engineering.


2017 ◽  
Vol 312 (5) ◽  
pp. H919-H931 ◽  
Author(s):  
Tiam Feridooni ◽  
Adam Hotchkiss ◽  
Mark Baguma-Nibasheka ◽  
Feixiong Zhang ◽  
Brittney Allen ◽  
...  

β-Adrenergic receptors (β-ARs) and catecholamines are present in rodents as early as embryonic day (E)10.5. However, it is not known whether β-AR signaling plays any role in the proliferation and differentiation of ventricular cells in the embryonic heart. Here, we characterized expression profiles of β-AR subtypes and established dose-response curves for the nonselective β-AR agonist isoproterenol (ISO) in the developing mouse ventricular cells. Furthermore, we investigated the effects of ISO on cell cycle activity and differentiation of cultured E11.5 ventricular cells. ISO treatment significantly reduced tritiated thymidine incorporation and cell proliferation rates in both cardiac progenitor cell and cardiomyocyte populations. The ISO-mediated effects on DNA synthesis could be abolished by cotreatment of E11.5 cultures with either metoprolol (a β1-AR antagonist) or ICI-118,551 (a β2-AR antagonist). In contrast, ISO-mediated effects on cell proliferation could be abolished only by metoprolol. Furthermore, ISO treatment significantly increased the percentage of differentiated cardiomyocytes compared with that in control cultures. Additional experiments revealed that β-AR stimulation leads to downregulation of Erk and Akt phosphorylation followed by significant decreases in cyclin D1 and cyclin-dependent kinase 4 levels in E11.5 ventricular cells. Consistent with in vitro results, we found that chronic stimulation of recipient mice with ISO after intracardiac cell transplantation significantly decreased graft size, whereas metoprolol protected grafts from the inhibitory effects of systemic catecholamines. Collectively, these results underscore the effects of β-AR signaling in cardiac development as well as graft expansion after cell transplantation. NEW & NOTEWORTHY β-Adrenergic receptor (β-AR) stimulation can decrease the proliferation of embryonic ventricular cells in vitro and reduce the graft size after intracardiac cell transplantation. In contrast, β1-AR antagonists can abrogate the antiproliferative effects mediated by β-AR stimulation and increase graft size. These results highlight potential interactions between adrenergic drugs and cell transplantation.


Sign in / Sign up

Export Citation Format

Share Document