scholarly journals Preparation and Mechanical Properties of Fe3Al-MWNTs Composites

2008 ◽  
Vol 17 (4) ◽  
pp. 096369350801700
Author(s):  
Laixue Pang ◽  
Jinsheng Zhang ◽  
Jing Xu

Multiwall carbon nanotubes (MWNT) reinforced iron aluminides (Fe3Al) intermetallic matrix composites have been prepared by a conventional (hot pressing) sintering method. Morphological, structural, compositional and mechanical properties investigations have been performed. Compressive testing shows that the composites still display high yield strength. The first results show that carbon nanotubes have been preserved in composite structure during the sintering process.

2019 ◽  
Vol 104 (9-12) ◽  
pp. 3803-3820 ◽  
Author(s):  
Olusoji Oluremi Ayodele ◽  
Mary Ajimegoh Awotunde ◽  
Mxolisi Brendon Shongwe ◽  
Adewale Oladapo Adegbenjo ◽  
Bukola Joseph Babalola ◽  
...  

1990 ◽  
Vol 213 ◽  
Author(s):  
D.E. Alman ◽  
N.S. Stoloff

ABSTRACTThis paper is concerned with the processing and mechanical properties of intermetallic-matrix composites. The effects of processing variables on fabrication of compounds including Ni3Al, NiAl, TiTaAl2, MoSi2 and their composites is described. A key concern is with processing effects on microstructure, selection of compatible ceramic reinforcing phases, and whisker alignment through injection molding.


2009 ◽  
Vol 620-622 ◽  
pp. 425-428 ◽  
Author(s):  
Rui Guo ◽  
Bo Wang ◽  
Ji Qiang Gao ◽  
Jian Feng Yang

Dense multiwall carbon nanotubes (MWNTs) reinforced barium aluminosilicate (BAS)–silicon nitride (Si3N4) composites were fabricated by hot-pressing sintering. The effect of MWNTs on the microstructure, compositional investigations, as well as mechanical characterization of the composites was investigated. The results show that MWNTs were preserved in the composites after sintering and present good adherence to matrix grains. The incorporation of 3% 1-2μm MWNTs effectively improved the fracture toughness of the BAS/Si3N4 composites from 8.02 to 8.6 MPa•m1/2.


2016 ◽  
Vol 51 (11) ◽  
pp. 1631-1642 ◽  
Author(s):  
JSS Babu ◽  
A Srinivasan ◽  
CG Kang

Nano-microhybrid reinforced metal matrix composites are the novel combination of composite system which enhanced the mechanical properties of the metal matrix composites. The aim of this study is to determine the nano- and macromechanical properties of aluminium (A356)-based hybrid composites reinforced with multiwall carbon nanotubes and alumina short fibers (Al2O3sf). Hybrid preforms were developed initially, by a combination of multiwall carbon nanotubes and Al2O3sf with total volume fractions of 10%, 15% and 20% and by varying the weight percentage of multiwall carbon nanotubes such as 1%, 2% and 3%. The fabricated hybrid preforms were then infiltrated with aluminium alloy (A356), and the microstructure and mechanical properties of the composites were evaluated. The distribution of multiwall carbon nanotubes within the array of the Al2O3sf network which exists in clusters was found to be relatively good. The mechanical properties such as the hardness and tensile strength of Al-based hybrid metal matrix composites were found to be improved by up to 2 wt% of multiwall carbon nanotubes. The causative reason for this is attributed to a combined effect of both multiwall carbon nanotubes and Al2O3sf, which contributed to better load sharing between the fibers and the Al matrix, and also accounted for the resistance of dislocation movements caused by the presence of the multiwall carbon nanotubes. In addition, the continuous stiffness measurement method was also used to evaluate the nanomechanical properties of the composites. The results showed that the influence of multiwall carbon nanotubes highlighted the properties on a nanoscale.


2010 ◽  
Vol 105-106 ◽  
pp. 195-198
Author(s):  
Xin Fang Cui ◽  
Shuang Quan Fang ◽  
Ying Jie Qiao ◽  
Qi Jia

Ti5Si3 matrix composites reinforced by carbon nanotubes were fabricated by vacuum hot pressing sintering. X-ray diffraction and scanning electron microcopy were carried out to analyze the phase and microstructure of the composites. The effects of carbon nanotubes on mechanical properties were investigated. Experimental results showed that the nanotubes partly reacted with Ti and Si powders to obtain Ti5Si3 and Ti3SiC2, TiSi2 when the sintering temperature is about 1380oC. The mechanical properties of composites can be affected by carbon nanotubes. Meanwhile, the maximal increments of Vickers hardness, bending strength and fracture toughness of the composites, compared with the Ti5Si3 matrix, were 62.9%, 160.9% and 159.3%, respectively. Both of transgranular and intergranular fracture in the composites were the main fracture mode. The fracture manners of composites mainly include “bridging” of CNTs, “deflection” of minor phases and the evolution of grain.


2000 ◽  
Vol 646 ◽  
Author(s):  
B.G. Park ◽  
S.H. Ko ◽  
Y.H. Park

ABSTRACTIron aluminides are of considerable interest due to their low cost, relatively high melting point, relatively low density, and excellent resistance to oxidation, sulfidation and molten salts. However, poor ductility and fracture toughness at room temperature hinder their use as a structural material. Refining of the microstructure is known to be one method to increase the room temperature ductility. Mechanical alloying (MA) is an easy way to obtain fine microstructures. In addition, pulse discharge sintering (PDS) is a new technology which suppresses grain growth during sintering because the sparks generated during sintering break the surface oxide layer of the powder particles and thus speed up the sintering process. Therefore, the combination of MA and PDS processes results in final products with very fine microstructures. Fe-28at.%Al alloy and its composite reinforced with 5vol.% of TiB2 particles were fabricated by the MA-PDS process. The mechanical properties of these materials were improved significantly as compared to conventionally processed materials.


Sign in / Sign up

Export Citation Format

Share Document