Preparation and Properties of Ti5Si3 Matrix Composites Reinforced by Carbon Nanotube

2010 ◽  
Vol 105-106 ◽  
pp. 195-198
Author(s):  
Xin Fang Cui ◽  
Shuang Quan Fang ◽  
Ying Jie Qiao ◽  
Qi Jia

Ti5Si3 matrix composites reinforced by carbon nanotubes were fabricated by vacuum hot pressing sintering. X-ray diffraction and scanning electron microcopy were carried out to analyze the phase and microstructure of the composites. The effects of carbon nanotubes on mechanical properties were investigated. Experimental results showed that the nanotubes partly reacted with Ti and Si powders to obtain Ti5Si3 and Ti3SiC2, TiSi2 when the sintering temperature is about 1380oC. The mechanical properties of composites can be affected by carbon nanotubes. Meanwhile, the maximal increments of Vickers hardness, bending strength and fracture toughness of the composites, compared with the Ti5Si3 matrix, were 62.9%, 160.9% and 159.3%, respectively. Both of transgranular and intergranular fracture in the composites were the main fracture mode. The fracture manners of composites mainly include “bridging” of CNTs, “deflection” of minor phases and the evolution of grain.

2013 ◽  
Vol 745-746 ◽  
pp. 700-705
Author(s):  
Huang Liu ◽  
Guo Qiang Luo ◽  
Pin Gan Chen ◽  
Qiang Shen ◽  
Lian Meng Zhang

SiC/Cu composites exhibit low density, low coefficient of thermal expansion and excellent mechanical properties. In this study, Zn of 2 wt. % was added as the sintering activator, and the high volume faction (60%) SiC/Cu composites was fabricated by hot pressing sintering technology. The phase composition and morphology of as-prepare samples were characterized by X-ray diffraction (XRD) system and scanning electron microscopy (SEM) equipped with an energy-dispersive spectroscopy (EDS) system. The as-prepared SiC/Cu composites were dense and uniform as well as void free. The results show that SiC/Cu composites can reach excellent mechanical properties of SiC/Cu composites. With the increase of sintering temperature, Vickers hardness and the bending strength of the samples increased obviously and the as-prepared SiC/Cu composites achieved a maximum Vickers hardness and bending strength respectively of 195MPa and 140MPa.


2009 ◽  
Vol 79-82 ◽  
pp. 477-480 ◽  
Author(s):  
Li Hua Dong ◽  
Wei Ke Zhang ◽  
Jian Li ◽  
Yan Sheng Yin

Near full dense B4C ceramic matrix composites were fabricated from Ti-Al-B4C system by combining high energy milling with hot pressing sintering. The effect of different content of Ti-Al on the mechanical properties and microstructure of the as-prepared composites was investigated. A TiAl/B4C composite, whose typical bending strength and fracture toughness are 437.3 MPa and 4.85 MPa•m1/2, respectively, was made. The sintering mechanism and reinforcement mechanism were discussed with the assistant of X-Ray diffraction and electron microscopy.


2008 ◽  
Vol 17 (4) ◽  
pp. 096369350801700
Author(s):  
Laixue Pang ◽  
Jinsheng Zhang ◽  
Jing Xu

Multiwall carbon nanotubes (MWNT) reinforced iron aluminides (Fe3Al) intermetallic matrix composites have been prepared by a conventional (hot pressing) sintering method. Morphological, structural, compositional and mechanical properties investigations have been performed. Compressive testing shows that the composites still display high yield strength. The first results show that carbon nanotubes have been preserved in composite structure during the sintering process.


Author(s):  
Memduh Kara ◽  
Tolga Coskun ◽  
Alper Gunoz

Aluminum is a material with advantageous properties such as lightness, good conductivity, high plastic deformation ability, and superior corrosion resistance. However, aluminum and many aluminum alloys have disadvantages in terms of mechanical properties such as hardness, tensile strength, and wear resistance. To overcome this disadvantage of aluminum, it is a good method to add ceramic particles to the matrix. For this purpose, in this study, B4C (boron carbide)-reinforced AA2014 aluminum matrix composites were fabricated at 3%, 5%, and 7% reinforcement ratios using the stir casting method. Tensile tests, wear tests, cutting force measurements, and microhardness measurements were performed to determine the fabricated composite materials’ mechanical properties. Scanning electron microscopy and optical microscopy were used to analyze the microstructure of composite. X-ray diffraction analysis was utilized to study the phase identification. As a result of the study, it was observed that with the increase in the B4C reinforcement ratio, the mechanical properties of the aluminum matrix composite material, such as wear resistance, cutting strength, and hardness, increased. On the other hand, the change in tensile strength did not occur in this way. Tensile strength first increased and then decreased. The highest value of tensile strength was achieved at 5% B4C reinforcement. X-ray diffraction results showed that AA2014 and B4C were the fundamental elements in composites and are free from intermetallics.


Author(s):  
T Narendiranath Babu ◽  
E Rajkumar ◽  
George George ◽  
Jefferson Jobai ◽  
D Rama Prabha

The focus of our study was to evaluate and compare the mechanical properties, namely tensile and bending strength of natural fibre composites. Natural fibre composites are composites consisting of fibres made from plants and animals. The natural fibre chosen for this study was Tampico fibre. The moulds were made according to ASTM D638 and D790 standards for both tensile and bending specimens. The first set of composites were arranged in three different orientations namely uniaxial, biaxial and criss-cross. The moulds were prepared using the hand-lay-up technique. These fibres were combined with Epoxy LY-556 pitch and Hardener HY-951 in a specific proportion to make the composite. The second set of composites included an additional variant in the form of biaxial E-glass fibres of 270GSM density, to compare the differences in the mechanical strength. The X-ray diffraction and Fourier-transform infrared spectroscopy were performed on the specimen to understand the lattice structure and prevalent bonds formed within the composites.


Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 927
Author(s):  
Xuelei Wang ◽  
Qiufeng Wang ◽  
Zhaojun Dong ◽  
Xiaoqian Zhou ◽  
Xiaoliang Wang ◽  
...  

Ti(C,N)-based cermets with multicomponent ingredients were prepared using vacuum sintering technology. The effect of molding agents, binder phase and sintering temperature on Ti(C,N)-based cermets were studied. The optimum molding performance was obtained by adding 2% polyvinyl alcohol (PVA-1788). The microstructure and mechanical properties of Ti(C,N)-based cermets were investigated. The Ti(C,N)-based cermet with a weight percentage of TiC:TiN:Ni:Co:Mo:WC:Cr3C2:C = 40:10:20:10:7:8:4:1 and sintered at 1450 °C had the optimal mechanical properties. The relative bending strength, Vickers hardness, elastic modulus and wear resistance were 2010 MPa, 15.01 GPa, 483.57 GPa and 27 mg, respectively. Additionally, X-ray diffraction (XRD), backscatter scanning electron microscopy pictures (SEM–BSE), energy dispersive spectrometry (EDS) and optical micrographs of Ti(C,N)-based cermets were characterized.


2014 ◽  
Vol 87 (2) ◽  
pp. 340-347 ◽  
Author(s):  
Zhaogang Liu ◽  
Mei Li ◽  
Yanhong Hu ◽  
Hai Fu ◽  
Mitang Wang ◽  
...  

ABSTRACT Rubber composites were synthesized by natural rubber filled with cerium oxide with different particle diameters. The dispersion morphology of cerium oxide in rubber matrix and the mechanical properties of composites were studied, and the contrast experiment of reinforcing rubber with cerium oxide was performed. The results showed that the small particles of cerium oxide had better disparity than the large particles of cerium oxide in NR. The mechanical properties of rubber filled with small particles of cerium oxide were better than those of rubber filled with large particles of cerium oxide. The crystalline rubber was measured by X-ray diffraction, which indicated that the CeO2 accelerated crystallization capacity and confined the rubber chain movement. The tensile strength of rubber was increased by this confinement.


2006 ◽  
Vol 309-311 ◽  
pp. 359-362 ◽  
Author(s):  
L.S. Ozyegin ◽  
Oguzhan Gunduz ◽  
Faik N. Oktar ◽  
B. Oz ◽  
Simeon Agathopoulos ◽  
...  

The aim of this study was to prepare high performance biomaterials suitable for use at load bearing applications with high bioactivity. The hydroxyapatite (HA) was prepared from bovine bones via calcination technique. The bovine derived HA (BHA) was mixed with 5 and 10 wt% metallic titanium (Ti) and the obtained homogenous mixtures were pressed to produce the test samples. The compacts were sintered at temperatures between 1000 and 1300°C. Compression strength, density, and microhardness were measured. SEM and X-ray diffraction studies were also made. The best mechanical properties were obtained between after sintering at 1200-1300°C.


2021 ◽  
Vol 875 ◽  
pp. 138-145
Author(s):  
Muhammad Mansoor ◽  
Noveed Ejaz ◽  
Liaqat Ali ◽  
Hamid Zaigham

The development of metal-matrix composites (MMCs) has mainly been driven by the growing needs of modern applications for lightweight materials yet strong enough to withstand high service loading. On the other hand, carbon nanotubes (CNTs) presenting excellent combination of mechanical and physical properties have already performed as an excellent strengthening to reinforce MMCs. In present study, an air induction furnace was used to fabricate aluminum-multiwall carbon nanotubes (Al-MWCNTs) composite. The process was benefited for better dispersion of the CNTs, which was validated during microscopic studies. Additionally, the mechanical properties were significantly augmented i.e., the yield strength from 64±3 to 115±2 MPa, the tensile strength from 82±2 to 125±3 MPa for matrix material and Al-CNTs composite, respectively. The structural analysis including, grain size, crystallite strain and dislocation density were investigated using X-ray diffraction to relate with the improvement in the properties.


2015 ◽  
Vol 815 ◽  
pp. 297-300 ◽  
Author(s):  
Xing Ping Fan ◽  
Ben Ju Wang ◽  
Xiao Qing Ren ◽  
Fu Chang Peng

The medical Ti-20Mo alloys were fabricated by powder metallurgy. The effects of sintering temperature on the phase, the morphology and the mechanical properties of Ti-Mo alloys were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and mechanical properties test methods. The results showed that after sintering at 1200 °C, the microstructure of Ti-Mo alloys mainly consisted of α phase. The increasing sintering time could promote α→β phase transition, thus the flexural strength and the elastic modulus of Ti-Mo alloys could be controlled. When the sintering temperature was 1300 °C, molybdenum content was 20%, the bending strength and the compressive strength of Ti-20Mo alloy were 1369MPa and 2602MPa respectively, and the elastic modulus was 3.4GPa. It may be concluded that the Ti-20Mo alloys is prospective prostheses materials.


Sign in / Sign up

Export Citation Format

Share Document