Effect of Heat Treatment on the Fracture Toughness of Glass Fibre Reinforced Polypropylene

2002 ◽  
Vol 10 (3) ◽  
pp. 211-218
Author(s):  
Jeng-Shyong Lin ◽  
Sheng-Kuen Wu

In this work, the effect of heat treatment on the fracture toughness of glass fibre reinforced polypropylene was studied. Polypropylene blended with short glass fibres was injection-moulded. The moulded parts were heat treated at 150°C for 30 min. The crack growth resistance curve (R-curve) was measured to evaluate the effect of heat treatment on the fracture toughness, and to determine the stress intensity factor at the point of instability, KR(ins). The fracture surface was examined using scanning electron microscope to analyze the fracture mechanism. The results show that the stress intensity factor at the unstable fracture point KR(ins) increases with the initial crack length.

2011 ◽  
Vol 90-93 ◽  
pp. 2472-2476
Author(s):  
Wei Wang ◽  
Zhao Peng Ni ◽  
Dong Zhu Chen ◽  
Guang Ming Yin ◽  
Peng Ding ◽  
...  

In this paper secondary lining of an underwater tunnel which had appeared I-longitudinal crack was taken as study object according to theory of fracture mechanics. Finite Element analysis was carried out to calculate the stress intensity factor at the tip of I-longitudinal crack which located in vault, then to analyze the extended state of crack based on double-K fracture criteria. The computation results indicate that the stress intensity factor at the tip of I-longitudinal cracks which appear within 20 degrees of the vault do not exceed unstable fracture toughness, lining is in stable growth stage and do not occur instable failure. The stress intensity factor at the tip of I-longitudinal cracks appeared in vault is maximum and appeared in both side of vault is minor, the further away from vault the less of stress intensity factor. When water level below the top of tunnel, with the rise of water level the stress intensity factor at the tip of I-longitudinal decrease and the external water pressure has restrain effect to the crack extension. When water level exceed the top of tunnel, with the rise of water level the stress intensity factor at the tip of large depth of crack decrease rapidly until arrive negative value, then increase backward until greater than unstable fracture toughness and cause lining structural local instable failure.


2008 ◽  
Vol 33-37 ◽  
pp. 357-362
Author(s):  
Akira Shimamoto ◽  
Ryo Kubota

The dynamic fracture experiments were conducted on the heat treated magnesium alloys; AZ31B-O, AZ31B-200 °C, and AZ31B-430 °C. Cross shaped specimens with the crack on their center were used for the experiments. Dynamic fracture behavior near a crack tip under equal and unequal biaxial stress was observed by the caustics method. From the observation, the stress intensity factor and the fracture toughness value were calculated. As a result, the effect of heat treatment was found. However, no clear relation such as correlation between dynamic stress intensity factor and heat treatment temperature was deduced.


2020 ◽  
Author(s):  
Salvatore D'Urso ◽  
Lucas Pimienta ◽  
François Passelègue ◽  
Federica Sandrone ◽  
Sergio Vinciguerra ◽  
...  

<p>Fracture mechanics is an important tool to assess the slope stability, since this approach offers a methodology to study the fracture stress field in the neighborhood of the joint tips and accurately predict propagation of the joints over time. While the fracture toughness of material has been extensively studied in the past, low interest was given to the influence of initial damage on the subcritical crack growth, despite of its relevance to assess long term slope stability. Here we report new experimental results that address this question.</p><p>Starting from the real case of unstable rock mass of “Madonna del Sasso” (Colombero et al., 2015), a series of Cracked Chevron Notched Brazilian Disc (CCNBD) (Fowell, 1995) specimens were failed in a standard Mode I tensile test to investigate the effects of thermal damage on fracture toughness and subcritical crack growth on samples of granite of Alzo.</p><p>The degree of initial damage was imposed using slow heat treatment (1°C/min) up to 100, 200, 300 and 400°C, to emulate different levels of rock degradation. The samples were equipped with strain gauges close to the tips of the notch, an extensometer for the Crack Mouth Opening Displacement (CMOD) and twelve Acoustic Emission recorders.</p><p>Our results show that fracture toughness decreases with increasing thermal damage, in agreement with previous studies (Nasseri, Schubnel, & Young, 2007). The fracture toughness of undamaged granite is 1.04 MPa m<sup>1/2</sup>, but 0.65 MPa m<sup>1/2</sup> after treatment up to 400°C.</p><p>Subcritical crack growth behaviour has been studied for samples treated from 100°C up to 400°C through creep tests on CCNBD specimens. The overall effect of heat treatment is to increase the crack growth rate in granite for a given stress intensity factor. The slopes of stress intensity factor versus crack velocity curves are sensitive to modifications of initial damage’s degree. Trend drops substantially with increase of the temperature of the heat treatment. This shows a substantial increase of the internal damage index n, and a decrease of the time to failure of the CCNBD specimens.</p><p>The study highlights the importance of considering both the time-dependent slope behaviour and effects of rocks internal damage, since these conditions could lead to an unexpected premature failure.</p>


2021 ◽  
Vol 87 (2) ◽  
pp. 56-64
Author(s):  
G. Pluvinage

Different stress distributions for an elastic behavior are presented as analytical expressions for an ideal crack, a sharp notch and a blunt notch. The elastic plastic distribution at a blunt notch tip is analyzed. The concept of the notch stress intensity factor is deduced from the definition of the effective stress and the effective distance. The impacts of the notch radius and constraint on the critical notch stress intensity factor are presented. The paper ends with the presentation of the crack driving force Jρ for a notch in the elastic case and the impact of the notch radius on the notch fracture toughness Jρ,c. The notch fracture toughness Jρ,c is a measure of the fracture resistance which increases linearly with the notch radius due to the plastic work in the notch plastic zone. If this notch plastic zone does not invade totally the ligament, the notch fracture toughness Jρ,c is constant. This occurs when the notch radius is less than a critical one and there is no need to use the cracked specimen to measure a lower bound of the fracture resistance.


Cellulose ◽  
2021 ◽  
Author(s):  
C. Fernández-Diego ◽  
I. A. Carrascal ◽  
A. Ortiz ◽  
I. Fernández ◽  
D. Ferreño ◽  
...  

AbstractOil-immersed transformers use paper and oil as insulation system which degrades slowly during the operation of these machines. Cellulose materials are used generally as insulation solid in power transformers. The degree of polymerization (DP), defined as number of repeating β-glucose residues in the cellulose molecule, is a critical property of cellulosic insulation material used in transformers, since it provides information about paper ageing and its mechanical strength. The fast-developing electric power industry demanding superior performance of electrical insulation materials has led to the development of new materials, as well as different drying techniques performed during transformer manufacturing and service when required. Both developments have caused some practical difficulties in the DP measurement. Moreover, the increasing interest in synthetic dielectric materials replacing cellulose materials requires measuring alternative properties to the DP to quantify the degradation of insulation solids over time. In this sense, this paper proposes the possibility of analyzing paper degradation through fracture toughness. This approach is different from the study of mechanical properties such as tensile strength or strain because it provides a tool for solving most practical problems in engineering mechanics, such as safety and life expectancy estimation of cracked structures and components which cannot to be considered through the traditional assessment of the mechanical resistance of the material. An accelerated thermal ageing of Kraft paper in mineral oil was carried out at 130 °C during different periods of time, to obtain information on the kinetics of the ageing degradation of the paper. Double-edged notched specimens were tested in tension to study their fracture toughness. The evolution of the load–displacement curves obtained for different ageing times at the ageing temperature of 130 °C was utilized to the determination of the stress intensity factor. Furthermore, different kinetic models based on this stress intensity factor were applied to relate its evolution over time as a function of the temperature. Finally, the correlation between the DP and stress intensity factor, which depends on the fiber angle, was also defined. Graphic abstract


2006 ◽  
Vol 324-325 ◽  
pp. 251-254 ◽  
Author(s):  
Tai Quan Zhou ◽  
Tommy Hung Tin Chan ◽  
Yuan Hua

The behavior of crack growth with a view to fatigue damage accumulation on the tip of cracks is discussed. Fatigue life of welded components with initial crack in bridges under traffic loading is investigated. The study is presented in two parts. Firstly, a new model of fatigue crack growth for welded bridge member under traffic loading is presented. And the calculate method of the stress intensity factor necessary for evaluation of the fatigue life of welded bridge members with cracks is discussed. Based on the concept of continuum damage accumulated on the tip of fatigue cracks, the fatigue damage law suitable for steel bridge member under traffic loading is modified to consider the crack growth. The proposed fatigue crack growth can describe the relationship between the cracking count rate and the effective stress intensity factor. The proposed fatigue crack growth model is then applied to calculate the crack growth and the fatigue life of two types of welded components with fatigue experimental results. The stress intensity factors are modified by the factor of geometric shape for the welded components in order to reflect the influence of the welding type and geometry on the stress intensity factor. The calculated and measured fatigue lives are generally in good agreement, at some of the initial conditions of cracking, for a welded component widely used in steel bridges.


2010 ◽  
Vol 452-453 ◽  
pp. 473-476 ◽  
Author(s):  
Hong Bo Liu ◽  
Long Jun Xu ◽  
Shuang Li ◽  
Yong Song Shao

Brittle fracture was identified in many of prequalified weld joints in steel moment frames in the 1994 Nothridge earthquake. Then analyses of response and damage mechanism of beam-to-column connections under seismic load were widely studied in the world, but few people conduct the research on seismic-resistant behavior of beam-to-column web connections. To quantify the variation of stress intensity factor to weld root flaw sizes beam-to-column web connections with tapered beam flange plates, detailed 3D finite element analyses is used to study fracture toughness requirements in beam-to-column web connections, considering the large deformation, large strain, bolts pretension, bolt contact-slide, as well as material harden and soften. Fracture toughness demands are evaluated in terms of the mode I stress intensity factor. The stress intensity factor is calculated through a J-integral approach. The fracture toughness demands are studied for the flaw on the top of the beam flange and the bottom surface, respectively. Results indicate that the likelihood of top flange fractures is smaller than that of bottom flange fracture. Stress intensity factor is not uniform and is largest in the edge of beam flange. The fracture toughness in the edge of beam flange for web connections with step beam flange plates is 15% less than that for tapered beam flange plates.


Author(s):  
Wei Lu ◽  
Zheng He

As one of the most critical barrier of pressurized-water reactor, Reactor Pressurized Vessel (RPV) is exposed to high temperature, high pressure and irradiation. During the lifetime of RPV, the core belt material will become brittle under the influence of neutron irradiation. The ductile-brittle transition temperature will increase and upper shelf energy will decrease. Thus the structure integrity evaluation of RPV concerning brittle fracture is one of the most important tasks of RPV lifetime management. The non-LOCA accident of Rancho Seco nuclear power plant in 1978 indicates that the emergent cooling transients the sudden cooling down may accompany with the re-pressurize of main loop. The combination of pressure loads and thermal loads may induce a large tensile stress in RPV internal surface, which is the so called pressurized thermal shock (PTS). Due to the existence of welding cladding on the inner surface of RPV, the discontinuity of stress distribution on the cladding-base interface of RPV wall will make calculation of stress-intensity-factor (SIF) difficult. In present research, a two dimensional axial-symmetrical model is built and Finite Element Method (FEM) is adopted to calculate the transient thermal distribution and stress distribution. The influence function method is adopted to calculate crack SIF. Stress distributions in the base and cladding are decomposed respectively and SIFs are calculated respectively to obtain the crack SIF. ASME method is used to calculate the fracture toughness. Present PTS program is validated by the comparative benchmark calculation (the International Comparative Assessment Study of Pressurized Thermal-Shock in Reactor Pressure Vessels). The calculated SIF from present program lies in the reasonable region of the comparing group results. A LOCA transient is investigated with a semi-elliptical surface crack on the RPV beltline region. The temperature and stress distribution along the vessel wall during the transient are given. The stress intensity factors at the deepest and interface point are given respectively. The integrity of RPV under PTS transient is evaluated by comparing stress intensity factor with fracture toughness. Results indicate that the stress intensity factor will not exceed the fracture toughness of the RPV material. The difference between the stress intensity factor and fracture toughness reach a minimum value at the crack tip temperature 20°C. Present research gives a reliable and efficient program to perform RPV structure integrity assessment with surface crack under PTS, which is suitable for further parameter analysis and probabilistic analysis.


Sign in / Sign up

Export Citation Format

Share Document