Influence of the initial damage on fracture toughness and subcritical crack growth in a granite rock

Author(s):  
Salvatore D'Urso ◽  
Lucas Pimienta ◽  
François Passelègue ◽  
Federica Sandrone ◽  
Sergio Vinciguerra ◽  
...  

<p>Fracture mechanics is an important tool to assess the slope stability, since this approach offers a methodology to study the fracture stress field in the neighborhood of the joint tips and accurately predict propagation of the joints over time. While the fracture toughness of material has been extensively studied in the past, low interest was given to the influence of initial damage on the subcritical crack growth, despite of its relevance to assess long term slope stability. Here we report new experimental results that address this question.</p><p>Starting from the real case of unstable rock mass of “Madonna del Sasso” (Colombero et al., 2015), a series of Cracked Chevron Notched Brazilian Disc (CCNBD) (Fowell, 1995) specimens were failed in a standard Mode I tensile test to investigate the effects of thermal damage on fracture toughness and subcritical crack growth on samples of granite of Alzo.</p><p>The degree of initial damage was imposed using slow heat treatment (1°C/min) up to 100, 200, 300 and 400°C, to emulate different levels of rock degradation. The samples were equipped with strain gauges close to the tips of the notch, an extensometer for the Crack Mouth Opening Displacement (CMOD) and twelve Acoustic Emission recorders.</p><p>Our results show that fracture toughness decreases with increasing thermal damage, in agreement with previous studies (Nasseri, Schubnel, & Young, 2007). The fracture toughness of undamaged granite is 1.04 MPa m<sup>1/2</sup>, but 0.65 MPa m<sup>1/2</sup> after treatment up to 400°C.</p><p>Subcritical crack growth behaviour has been studied for samples treated from 100°C up to 400°C through creep tests on CCNBD specimens. The overall effect of heat treatment is to increase the crack growth rate in granite for a given stress intensity factor. The slopes of stress intensity factor versus crack velocity curves are sensitive to modifications of initial damage’s degree. Trend drops substantially with increase of the temperature of the heat treatment. This shows a substantial increase of the internal damage index n, and a decrease of the time to failure of the CCNBD specimens.</p><p>The study highlights the importance of considering both the time-dependent slope behaviour and effects of rocks internal damage, since these conditions could lead to an unexpected premature failure.</p>

2002 ◽  
Vol 10 (3) ◽  
pp. 211-218
Author(s):  
Jeng-Shyong Lin ◽  
Sheng-Kuen Wu

In this work, the effect of heat treatment on the fracture toughness of glass fibre reinforced polypropylene was studied. Polypropylene blended with short glass fibres was injection-moulded. The moulded parts were heat treated at 150°C for 30 min. The crack growth resistance curve (R-curve) was measured to evaluate the effect of heat treatment on the fracture toughness, and to determine the stress intensity factor at the point of instability, KR(ins). The fracture surface was examined using scanning electron microscope to analyze the fracture mechanism. The results show that the stress intensity factor at the unstable fracture point KR(ins) increases with the initial crack length.


2019 ◽  
Vol 142 (3) ◽  
Author(s):  
Ramgopal Thodla ◽  
Colum Holtam ◽  
Rajil Saraswat

Abstract High pressure high temperature (HPHT) design is a significant new challenge facing the subsea sector, particularly in the Gulf of Mexico. API 17TR8 provides HPHT Design Guidelines, specifically for subsea applications. Fatigue endurance (i.e., S–N) and fracture mechanics design are both permitted, depending on the criticality of the component. Both design approaches require material properties generated in corrosive environments, such as seawater with cathodic protection and/or sour production fluids. In particular, it is necessary to understand sensitivity to cyclic loading frequency (for both design approaches), crack growth rates (CGR) (for fracture mechanics approach) as well as fracture toughness performance. For many subsea components, the primary source of fatigue loading is associated with the start-up and subsequent shutdown operation of the well, with long hold periods in-between, during which static crack growth (CG) could occur. These are the two damage modes of most interest when performing a fracture mechanics based analysis. This paper presents the preliminary results of a novel single specimen test method that was developed to provide fatigue crack growth rate (FCGR) and fracture toughness data in corrosive environments, in a timeframe that is compatible with subsea HPHT development projects. Test data generated on alloy 625+ in seawater with cathodic protection are presented along with a description of how the test method was developed. A crack tip strain rate based formulation was applied to the data to rationalize the effect of frequency, stress intensity factor range (ΔK), and maximum stress intensity factor (Kmax).


Author(s):  
Ramgopal Thodla ◽  
Colum Holtam ◽  
Rajil Saraswat

High pressure high temperature (HPHT) design is a significant new challenge facing the subsea sector, particularly in the Gulf of Mexico. API 17TR8 provides HPHT Design Guidelines, specifically for subsea applications. Fatigue endurance (i.e. S-N) and fracture mechanics design are both permitted, depending on the criticality of the component. Both design approaches require material properties generated in corrosive environments, such as seawater with cathodic protection and/or sour production fluids. In particular, it is necessary to understand sensitivity to cyclic loading frequency (for both design approaches), crack growth rates (for fracture mechanics approach) as well as fracture toughness performance. For many subsea components, the primary source of fatigue loading is associated with the start-up and subsequent shutdown operation of the well, with long hold periods in-between, during which static crack growth could occur. These are the two damage modes of most interest when performing a fracture mechanics based analysis. This paper presents the preliminary results of a novel single specimen test method that was developed to provide fatigue crack growth rate and fracture toughness data in corrosive environments, in a timeframe that is compatible with subsea HPHT development projects. Test data generated on alloy 625+ in seawater with cathodic protection is presented along with a description of how the test method was developed. A crack tip strain rate based formulation was applied to the data to rationalize the effect of frequency, stress intensity factor range (ΔK) and maximum stress intensity factor (Kmax).


2016 ◽  
Vol 18 (3) ◽  
pp. 155
Author(s):  
Roziq Himawan ◽  
Mike Susmikanti

ABSTRACT In the in-service inspection conducted to G.A. Siwabessy reactor’s primary cooling system pipe, it was found the presence of inhomogenity inside of welding part. To verify whether the inhomogenity could be tolerated or not, comparative data from welding pre-service inspection is needed. Unfortunately, this weld wasn’t covered in pre-service inspection. Therefore, this inhomogenity needs to be analyzed. The purpose of this study is to evaluate the stress intensity factor of the inhomogenity, whether it is within a limit value or not and to predict the crack growth. Analysis were performed based on fracture mechanics theory using parameter of stress intensity factor. Two models were used for calculation approach that are plane crack model and semi-elliptic crack model. Hence, in order to predict the length of inhomogenity in the future, crack growth calculations were performed. The results showed that stress intensity values from both two models are remain below fracture toughness value of pipe’s material. Besides that, stress intensity factor from plane crack model is higher than those from semi-elliptic crack model. Under consideration that inhomogenity has an arc shape in actual, thus, stress intensity factor from this inhomogenity still low enough compare to the fracture toughness. Crack growth calculation’s results showed that after 300th cycle of loading, the length of inhomogenity reaches approximately 2 mm. Based on operation data of G.A. Siwabessy reactor, 300 cycle number is corresponds to 30 years operation. Based on these results it could be concluded that the presence of inhomogenity in the welding part does not affect the structure’s integrity of piping system. Keywords : Inhomogenity, fracture mechanics, fracture toughness, stress intensity factor, crack growth   ABSTRAK Pada pelaksanaan in-service inspection terhadap perpipaan sistem pendingin primer reaktor G.A. Siwabessy diketahui adanya inhomogenitas pada salah satu sambungan lasan pipa. Untuk memverifikasi apakah inhomogenitas ini dapat ditoleransi atau tidak, diperlukan data pembanding hasil pemeriksaan lasan pada saat fabrikasi. Namun, ternyata pada saat fabrikasi, sambungan lasan ini tidak mengalami pemeriksaan. Oleh karena itu, dalam rangka menetapkan apakah keberadaan inhomogentitas ini dapat ditoleransi atau tidak perlu dilakukan analisis terhadap inhomogenitas tersebut. Tujuan penelitian ini adalah untuk melakukan evaluasi stress intensity factor inhomogenitas di dalam pipa apakah masih berada di dalam batas nilai dan untuk memprediksi perambatan retak. Analisis dilakukan berdasarkan teori fracture mechanics dengan menghitung stress intensity factor inhomogenitas. Dalam perhitungan ini digunakan dua model untuk pendekatan, yaitu model retak planar dan model retak semi-ellips. Selanjutnya, untuk memprediksi panjang inhomogenitas di masa yang akan datang, dilakukan juga simulasi perambatan retak. Hasil-hasil analisis memperlihatkan bahwa nilai stress intensity factor berdasarkan model retak bentuk planar dan retak bentuk semi ellips masih jauh di bawah nilai fracture toughness material pipa. Selain itu, nilai yang dihasilkan berdasarkan model retak bentuk planar lebih besar dibandingkan dengan model retak bentuk semi ellips. Mengingat bentuk inhomogenitas yang berupa busur lingkaran, maka nilai stress intensity factor yang sesungguhnya dari inhomogenitas tersebut jauh lebih kecil dibandingkan dengan nilai fracture toughness. Sementara itu, untuk hasil simulasi perambatan retak menunjukkan bahwa pada siklus pembebanan ke-300 memberikan panjang sekitar 2 mm. Berdasarkan data operasi reaktor G.A. Siwabessy, jumlah siklus sebanyak 300 kali setara dengan pengoperasian reaktor selama 30 tahun. Berdasarkan dua hasil tersebut dapat disimpulkan bahwa keberadaan inhomogenitas pada sambungan lasan tidak berpengaruh terhadap integritas struktur sistem perpipaan. Kata kunci : Inhomogenitas, fracture mechanincs, fracture toughness, stress intensity factor, pertumbuhan retak 


Author(s):  
Felicia Stan

In this paper, a methodology is presented for predicting crack growth rate along three-dimensional crack fronts under mode I dynamic loading conditions. Within the present methodology, for every point along the crack front the stress intensity factor matches the dynamic fracture toughness at the onset of propagation. In order to accurately evaluate the dynamic stress intensity factor the component separation method of the dynamic J integral is used. To overcome the difficulties in three-dimensional dynamic fracture simulations, the three-dimensional dynamic moving finite element method based on three-dimensional moving 20-noded isoparametric elements is used. In the absence of experimental measurements for dynamic fracture toughness, a new methodology to estimate the dynamic fracture toughness is proposed, i.e., a hybrid experimental-numerical approach, which makes use of numerically determined histories of the dynamic stress intensity factor. The values of the dynamic stress intensity factor are converted into dynamic fracture toughness based on the Weibull distribution. The predictive ability of the developed methodology is demonstrated through the prediction of the dynamic crack growth in Double Cantilever Beam (DCB) specimen of PMMA with different thickness.


2007 ◽  
Vol 353-358 ◽  
pp. 485-490 ◽  
Author(s):  
Y.M. Baik ◽  
K.S. Kim

Crack growth in compact specimens of type 304 stainless steel is studied at 538oC. Loading conditions include pure fatigue loading, static loading and fatigue loading with hold time. Crack growth rates are correlated with the stress intensity factor. A finite element analysis is performed to understand the crack tip field under creep-fatigue loading. It is found that fatigue loading interrupts stress relaxation around the crack tip and cause stress reinstatement, thereby accelerating crack growth compared with pure static loading. An effort is made to model crack growth rates under combined influence of creep and fatigue loading. The correlation with the stress intensity factor is found better when da/dt is used instead of da/dN. Both the linear summation rule and the dominant damage rule overestimate crack growth rates under creep-fatigue loading. A model is proposed to better correlate crack growth rates under creep-fatigue loading: 1 c f da da da dt dt dt Ψ −Ψ     =         , where Ψ is an exponent determined from damage under pure fatigue loading and pure creep loading. This model correlates crack growth rates for relatively small loads and low stress intensity factors. However, correlation becomes poor as the crack growth rate becomes large under a high level of load.


1989 ◽  
Vol 111 (1) ◽  
pp. 61-67 ◽  
Author(s):  
F. Erdogan

The problem of slow crack growth under residual stresses and externally applied loads in plates is considered. Even though the technique developed to treat the problem is quite general, in the solution given it is assumed that the plate contains a surface crack and the residual stresses are compressive near and at the surfaces and tensile in the interior. The crack would start growing subcritically when the stress intensity factor exceeds a threshold value. Initially the crack faces near the plate surface would remain closed. A crack-contact problem would, therefore, have to be solved to calculate the stress intensity factor. Depending on the relative magnitudes of the residual and applied stresses and the threshold and critical stress intensity factors, the subcritically growing crack would either be arrested or become unstable. The problem is solved and examples showing the time to crack arrest or failure are discussed.


2021 ◽  
Vol 87 (2) ◽  
pp. 56-64
Author(s):  
G. Pluvinage

Different stress distributions for an elastic behavior are presented as analytical expressions for an ideal crack, a sharp notch and a blunt notch. The elastic plastic distribution at a blunt notch tip is analyzed. The concept of the notch stress intensity factor is deduced from the definition of the effective stress and the effective distance. The impacts of the notch radius and constraint on the critical notch stress intensity factor are presented. The paper ends with the presentation of the crack driving force Jρ for a notch in the elastic case and the impact of the notch radius on the notch fracture toughness Jρ,c. The notch fracture toughness Jρ,c is a measure of the fracture resistance which increases linearly with the notch radius due to the plastic work in the notch plastic zone. If this notch plastic zone does not invade totally the ligament, the notch fracture toughness Jρ,c is constant. This occurs when the notch radius is less than a critical one and there is no need to use the cracked specimen to measure a lower bound of the fracture resistance.


Cellulose ◽  
2021 ◽  
Author(s):  
C. Fernández-Diego ◽  
I. A. Carrascal ◽  
A. Ortiz ◽  
I. Fernández ◽  
D. Ferreño ◽  
...  

AbstractOil-immersed transformers use paper and oil as insulation system which degrades slowly during the operation of these machines. Cellulose materials are used generally as insulation solid in power transformers. The degree of polymerization (DP), defined as number of repeating β-glucose residues in the cellulose molecule, is a critical property of cellulosic insulation material used in transformers, since it provides information about paper ageing and its mechanical strength. The fast-developing electric power industry demanding superior performance of electrical insulation materials has led to the development of new materials, as well as different drying techniques performed during transformer manufacturing and service when required. Both developments have caused some practical difficulties in the DP measurement. Moreover, the increasing interest in synthetic dielectric materials replacing cellulose materials requires measuring alternative properties to the DP to quantify the degradation of insulation solids over time. In this sense, this paper proposes the possibility of analyzing paper degradation through fracture toughness. This approach is different from the study of mechanical properties such as tensile strength or strain because it provides a tool for solving most practical problems in engineering mechanics, such as safety and life expectancy estimation of cracked structures and components which cannot to be considered through the traditional assessment of the mechanical resistance of the material. An accelerated thermal ageing of Kraft paper in mineral oil was carried out at 130 °C during different periods of time, to obtain information on the kinetics of the ageing degradation of the paper. Double-edged notched specimens were tested in tension to study their fracture toughness. The evolution of the load–displacement curves obtained for different ageing times at the ageing temperature of 130 °C was utilized to the determination of the stress intensity factor. Furthermore, different kinetic models based on this stress intensity factor were applied to relate its evolution over time as a function of the temperature. Finally, the correlation between the DP and stress intensity factor, which depends on the fiber angle, was also defined. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document