scholarly journals Role of RUNX2 transcription factor in epithelial mesenchymal transition in non-small cell lung cancer: Epigenetic control of the RUNX2 P1 promoter

Tumor Biology ◽  
2019 ◽  
Vol 41 (5) ◽  
pp. 101042831985101 ◽  
Author(s):  
Angélica María Herreño ◽  
Andrea Carolina Ramírez ◽  
Viviana Paola Chaparro ◽  
María José Fernandez ◽  
Alejandra Cañas ◽  
...  

Lung cancer has a high mortality rate in men and women worldwide. Approximately 15% of diagnosed patients with this type of cancer do not exceed the 5-year survival rate. Unfortunately, diagnosis is established in advanced stages, where other tissues or organs can be affected. In recent years, lineage-specific transcription factors have been associated with a variety of cancers. One such transcription factor possibly regulating cancer is RUNX2, the master gene of early and late osteogenesis. In thyroid and prostate cancer, it has been reported that RUNX2 regulates expression of genes important in tumor cell migration and invasion. In this study, we report on RUNX2/ p57 overexpression in 16 patients with primary non-small cell lung cancer and/or metastatic lung cancer associated with H3K27Ac at P1 gene promoter region. In some patients, H3K4Me3 enrichment was also detected, in addition to WDR5, MLL2, MLL4, and UTX enzyme recruitment, members of the COMPASS-LIKE complex. Moreover, transforming growth factor-β induced RUNX2/ p57 overexpression and specific RUNX2 knockdown supported a role for RUNX2 in epithelial mesenchymal transition, which was demonstrated through loss of function assays in adenocarcinoma A549 lung cancer cell line. Furthermore, RUNX2 increased expression of epithelial mesenchymal transition genes VIMENTIN, TWIST1, and SNAIL1, which reflected increased migratory capacity in lung adenocarcinoma cells.

Author(s):  
Qiu-di Deng ◽  
Xue-ping Lei ◽  
Yi-hang Zhong ◽  
Min-shan Chen ◽  
Yuan-yu Ke ◽  
...  

AbstractNon-small cell lung cancer (NSCLC) is characterized by a high incidence of metastasis and poor survival. As epithelial–mesenchymal transition (EMT) is well recognized as a major factor initiating tumor metastasis, developing EMT inhibitor could be a feasible treatment for metastatic NSCLC. Recent studies show that triptolide isolated from Tripterygium wilfordii Hook F attenuated the migration and invasion of breast cancer, colon carcinoma, and ovarian cancer cells, and EMT played important roles in this process. In the present study we investigated the effect of triptolide on the migration and invasion of NSCLC cell lines. We showed that triptolide (0.5, 1.0, 2.0 nM) concentration-dependently inhibited the migration and invasion of NCI-H1299 cells. Triptolide treatment concentration-dependently suppressed EMT in NCI-H1299 cells, evidenced by significantly elevated E-cadherin expression and reduced expression of ZEB1, vimentin, and slug. Furthermore, triptolide treatment suppressed β-catenin expression in NCI-H1299 and NCI-H460 cells, overexpression of β-catenin antagonized triptolide-caused inhibition on EMT, whereas knockout of β-catenin enhanced the inhibitory effect of triptolide on EMT. Administration of triptolide (0.75, 1.5 mg/kg per day, ip, every 2 days) for 18 days in NCI-H1299 xenograft mice dose-dependently suppressed the tumor growth, restrained EMT, and decreased lung metastasis, as evidence by significantly decreased expression of mesenchymal markers, increased expression of epithelial markers as well as reduced number of pulmonary lung metastatic foci. These results demonstrate that triptolide suppresses NSCLC metastasis by targeting EMT via reducing β-catenin expression. Our study implies that triptolide may be developed as a potential agent for the therapy of NSCLC metastasis.


2019 ◽  
Vol 22 (4) ◽  
pp. 238-244 ◽  
Author(s):  
Gang Chen ◽  
Bo Ye

Purpose: Epithelial-to-Mesenchymal Transition (EMT) was reported to play a key role in the development of Non-Small Cell Lung Cancer (NSCLC). The process of EMT is regulated by the changes of miRNAs expression. However, it is still unknown which miRNA changed the most in the process of canceration and whether these changes played a role in tumor development. Methods: A total of 36 SCLC patients treated in our hospital between 11th, 2015 and 10th, 2017 were enrolled. The samples of cancer tissues and paracancer tissues of patients were collected and analyzed. Then, the miRNAs in normal lung cells and NSCLC cells were also analyzed. In the presence of TGF-β, we transfected the miRNA mimics or inhibitor into NSCLC cells to investigate the role of the significantly altered miRNAs in cell migration and invasion and in the process of EMT. Results: MiR-330-3p was significantly up-regulated in NSCLC cell lines and tissues and miRNA- 205 was significantly down-regulated in NSCLC cell lines and NSCLC tissues. Transfected miRNA-205 mimics or miRMA-330-3p inhibitor inhibited the migration and invasion of NCIH1975 cell and restrained TGF-β-induced EMT in NSCLC cells. Conclusion: miRNA-330-3p and miRNA-205 changed the most in the process of canceration in NSCLC. Furthermore, miR-330-3p promoted cell invasion and metastasis in NSCLC probably by promoting EMT and miR-205 could restrain NSCLC likely by suppressing EMT.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lan-Lan Lin ◽  
Fan Yang ◽  
Dong-Huan Zhang ◽  
Cong Hu ◽  
Sheng Yang ◽  
...  

Abstract Background Rho GTPase activating protein 10 (ARHGAP10) has been implicated as an essential element in multiple cellular process, including cell migration, adhesion and actin cytoskeleton dynamic reorganization. However, the correlation of ARHGAP10 expression with epithelial–mesenchymal transition (EMT) in lung cancer cells is unclear and remains to be elucidated. Herein, we investigated the relationship between the trait of ARHGAP10 and non-small cell lung cancer (NSCLC) pathological process. Methods Immunohistochemistry was conducted to evaluate the expression of ARHGAP10 in NSCLC tissues. CCK-8 assays, Transwell assays, scratch assays were applied to assess cell proliferation, invasion and migration. The expression levels of EMT biomarkers and active molecules involved in PI3K/Akt/GSK3β signaling pathway were examined through immunofluorescence and Western blot. Results ARHGAP10 was detected to be lower expression in NSCLC tissues compared with normal tissues from individuals. Moreover, overexpression of ARHGAP10 inhibited migratory and invasive potentials of A549 and NCI-H1299 cells. In addition, ARHGAP10 directly mediated the process of EMT via PI3K/Akt/GSK3β pathway. Meanwhile, activation of the signaling pathway of insulin-like growth factors-1 (IGF-1) reversed ARHGAP10 overexpression regulated EMT in NSCLC cells. Conclusion ARHGAP10 inhibits the epithelial–mesenchymal transition in NSCLC via PI3K/Akt/GSK3β signaling pathway, suggesting agonist of ARHGAP10 may be an optional remedy for NSCLC patients than traditional opioids.


Sign in / Sign up

Export Citation Format

Share Document