scholarly journals Characteristics of Diagnostic Tests Used in the 2002 Low-Pathogenicity Avian Influenza H7N2 Outbreak in Virginia

2007 ◽  
Vol 19 (4) ◽  
pp. 341-348 ◽  
Author(s):  
François Elvinger ◽  
Bruce L. Akey ◽  
Dennis A. Senne ◽  
F. William Pierson ◽  
Barbara A. Porter-Spalding ◽  
...  

An outbreak of low-pathogenicity avian influenza (LPAI) H7N2 occurred in 2002 in the Shenandoah Valley, a high-density poultry production region in Virginia. Infected flocks were identified through a combination of observation of clinical signs and laboratory diagnostic tests designed to detect avian influenza (AI) antibodies, virus, or H7-specific RNA. In this report, fitness for purpose of 3 virus/RNA detection assays used during the outbreak was examined: 1) antigen capture enzyme immunoassay (AC-EIA), 2) real-time reverse transcription polymerase chain reaction (RRT-PCR), and 3) virus isolation (VI). Results from testing 762 turkey and 2,216 chicken tracheal swab pooled specimens were analyzed to determine diagnostic sensitivities and specificities of these tests under field conditions using Bayesian techniques for validation of diagnostic tests in the absence of a “gold standard.” Diagnostic sensitivities (with 95% probability intervals) in turkeys of AC-EIA and RRT-PCR, in reference to VI, were 65.9 (50.6; 81.3)% and 85.1 (71.9; 95.7)% and of VI 92.9 (78.0; 98.8)% in reference to AC-EIA or 88.7 (76.0; 97.2)% in reference to RRT-PCR; in chickens, diagnostic sensitivities were 75.1 (45.6; 94.2)%, 86.3 (65.9; 97.1)%, and 86.2 (65.8; 97.1)% or 86.3 (66.4; 97.2)%, respectively. Specificities were 99.1 (97.9; 99.8)%, 98.9 (98.0; 99.5)%, and 98.6 (97.4; 99.4)% or 98.8 (97.8; 99.5)% in turkeys and between 99.25% and 99.27% with probability intervals of approximately ±0.4% for all tests in chickens. Simultaneous use of AC-EIA and RRT-PCR contributed significantly to the rapid control of the outbreak, but the AI RRT-PCR assay with >85% sensitivity and ∼99% specificity, combined with relatively low cost and fast turnaround, could be used as the sole diagnostic test in outbreaks of LPAI.

Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1166
Author(s):  
Klaudia Chrzastek ◽  
Karen Segovia ◽  
Mia Torchetti ◽  
Mary Lee Killian ◽  
Mary Pantin-Jackwood ◽  
...  

In March 2017, highly pathogenic (HP) and low pathogenic (LP) avian influenza virus (AIV) subtype H7N9 were detected from poultry farms and backyard birds in several states in the southeast United States. Because interspecies transmission is a known mechanism for evolution of AIVs, we sought to characterize infection and transmission of a domestic duck-origin H7N9 LPAIV in chickens and genetically compare the viruses replicating in the chickens to the original H7N9 clinical field samples used as inoculum. The results of the experimental infection demonstrated virus replication and transmission in chickens, with overt clinical signs of disease and shedding through both oral and cloacal routes. Unexpectedly, higher levels of virus shedding were observed in some cloacal swabs. Next generation sequencing (NGS) analysis identified numerous non-synonymous mutations at the consensus level in the polymerase genes (i.e., PA, PB1, and PB2) and the hemagglutinin (HA) receptor binding site in viruses recovered from chickens, indicating possible virus adaptation in the new host. For comparison, NGS analysis of clinical samples obtained from duck specimen collected during the outbreak indicated three polymorphic sides in the M1 segment and a minor population of viruses carrying the D139N (21.4%) substitution in the NS1 segment. Interestingly, at consensus level, A/duck/Alabama (H7N9) had isoleucine at position 105 in NP protein, similar to HPAIV (H7N9) but not to LPAIV (H7N9) isolated from the same 2017 influenza outbreak in the US. Taken together, this work demonstrates that the H7N9 viruses could readily jump between avian species, which may have contributed to the evolution of the virus and its spread in the region.


2012 ◽  
Vol 20 (2) ◽  
pp. 140-145 ◽  
Author(s):  
Kyu-Jun Lee ◽  
Jun-Gu Choi ◽  
Hyun-Mi Kang ◽  
Kwang-Il Kim ◽  
Choi-Kyu Park ◽  
...  

ABSTRACTOutbreaks of avian influenza A virus infection, particularly the H5N1 strains that have affected birds and some humans for the past 15 years, have highlighted the need for increased surveillance and disease control. Such measures require diagnostic tests to detect and characterize the different subtypes of influenza virus. In the current study, a simple method for producing reference avian influenza virus antisera to be used in diagnostic tests was developed. Antisera of nine avian influenza A virus neuraminidases (NA) used for NA subtyping were produced using a recombinant baculovirus. The recombinant NA (rNA) proteins were expressed in Sf9 insect cells and inoculated intramuscularly into specific-pathogen-free chickens with the ISA70 adjuvant. The NA inhibition antibody titers of the rNA antiserum were in the ranges of 5 to 8 and 6 to 9 log2units after the primary and boost immunizations, respectively. The antisera were subtype specific, showing low cross-reactivity against every other NA subtype using the conventional thiobarbituric acid NA inhibition assay. These results suggest that this simple method for producing reference NA antisera without purification may be useful for the diagnosis and surveillance of influenza virus.


Author(s):  
Eide Dias Camargo ◽  
Paulo Mutuko Nakamura ◽  
Adelaide José Vaz ◽  
Marcos Vinícius da Silva ◽  
Pedro Paulo Chieffi ◽  
...  

The dot-enzyme-linked immunosorbent assay (dot-ELISA) was standardized using somatic (S) and excretory-secretory (ES) antigens of Toxocara-canis for the detection of specific antibodies in 22 serum samples from children aged 1 to 15 years, with clinical signs of toxocariasis. Fourteen serum samples from apparently normal individuals and 28 sera from patients with other pathologies were used as controls. All samples were used before and after absorption with Ascaris suum extract. When the results were evaluated in comparison with ELISA, the two tests were found to have similar sensitivity, but dot-ELISA was found to be more specific in the presence of the two antigens studied. Dot-ELISA proved to be effective for the diagnosis of human toxocariasis, presenting advantages in terms of yield, stability, time and ease of execution and low cost.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1782
Author(s):  
Sergio Migliore ◽  
Roberto Puleio ◽  
Robin A. J. Nicholas ◽  
Guido R. Loria

Contagious agalactia (CA) is suspected when small ruminants show all or several of the following clinical signs: mastitis, arthritis, keratoconjunctivitis and occasionally abortion. It is confirmed following mycoplasma isolation or detection. The historical and major cause is Mycoplasma agalactiae which was first isolated from sheep in 1923. Over the last thirty years, three other mycoplasmas (Mycoplasma mycoides subsp. capri, Mycoplasma capricolum subsp. capricolum and Mycoplasma putrefaciens) have been added to the etiology of CA because they can occasionally cause clinically similar outcomes though nearly always in goats. However, only M. agalactiae is subject to animal disease regulations nationally and internationally. Consequently, it makes little sense to list mycoplasmas other than M. agalactiae as causes of the OIE-listed CA when they are not officially reported by the veterinary authorities and unlikely to be so in the future. Indeed, encouraging countries just to report M. agalactiae may bring about a better understanding of the importance of CA. In conclusion, we recommend that CA should only be diagnosed and confirmed when M. agalactiae is detected either by isolation or molecular methods, and that the other three mycoplasmas be removed from the OIE Manual of Diagnostic Tests and Vaccines in Terrestrial Animals and associated sources.


2021 ◽  
Author(s):  
Pierre Bessière ◽  
Thomas Figueroa ◽  
Amelia Coggon ◽  
Charlotte Foret-Lucas ◽  
Alexandre Houffschmitt ◽  
...  

Highly pathogenic avian influenza viruses (HPAIV) emerge from low pathogenic avian influenza viruses (LPAIV) through the introduction of basic amino acids at the hemagglutinin (HA) cleavage site. Following viral evolution, the newly formed HPAIV likely represents a minority variant within the index host, predominantly infected with the LPAIV precursor. Using reverse-genetics engineered H5N8 viruses differing solely at the HA cleavage, we tested the hypothesis that the interaction between the minority HPAIV and the majority LPAIV could modulate the risk of HPAIV emergence and that the nature of the interaction could depend on the host species. In chickens, we observed that the H5N8 LP increased H5N8 HP replication and pathogenesis. By contrast, the H5N8 LP antagonized H5N8 HP replication and pathogenesis in ducks. Ducks mounted a more potent antiviral innate immune response than chickens against the H5N8 LP , which correlated with H5N8 HP inhibition. These data provide experimental evidence that HPAIV may be more likely to emerge in chickens than in ducks and underscore the importance of within-host viral variants interactions in viral evolution. IMPORTANCE Highly pathogenic avian influenza viruses represent a threat to poultry production systems and to human health because of their impact on food security and because of their zoonotic potential. It is therefore crucial to better understand how these viruses emerge. Using a within-host competition model between highly and low pathogenic avian influenza viruses, we provide evidence that highly pathogenic avian influenza viruses could be more likely to emerge in chickens than in ducks. These results have important implications for highly pathogenic avian influenza virus emergence prevention and they underscore the importance of within-host viral variants interactions in virus evolution.


2021 ◽  
Author(s):  
Kosuke Soda ◽  
Yukiko Tomioka ◽  
Chiharu Hidaka ◽  
Mayu Matsushita ◽  
Tatsufumi Usui ◽  
...  

Abstract Background: There were large outbreaks of high pathogenicity avian influenza (HPAI) caused by clade 2.3.4.4e H5N6 viruses in the winter of 2016–2017 in Japan, which caused large numbers of deaths among several endangered bird species including cranes, raptors, and birds in Family Anatidae. In this study, susceptibility of common Anatidae to a clade 2.3.4.4e H5N6 HPAI virus was assessed to evaluate their potential to be a source of infection for other birds. Eurasian wigeons (Mareca penelope), mallards (Anas platyrhynchos), and Northern pintails (Anas acuta) were intranasally inoculated with 106, 104, or 102 50% egg infectious dose (EID50) of clade 2.3.4.4e A/teal/Tottori/1/2016 (H5N6). Results: All birds survived for 10 days without showing any clinical signs of infection. Most ducks inoculated with ≥104 EID50 of virus seroconverted within 10 days post-inoculation (dpi). Virus was mainly shed via the oral route for a maximum of 10 days, followed by cloacal route in late phase of infection. Virus remained in the pancreas of some ducks at 10 dpi. Viremia was observed in some ducks euthanized at 3 dpi, and ≤106.3 EID50 of virus was recovered from systemic tissues and swab samples including eyeballs and conjunctival swabs. Conclusions: These results indicate that the subject duck species have a potential to be a source of infection of clade 2.3.4.4e HPAI virus to the environment and other birds sharing their habitats. Captive ducks should be reared under isolated or separated circumstances during the HPAI epidemic season to prevent infection and further viral dissemination.


Sign in / Sign up

Export Citation Format

Share Document