Fluid-structure interaction simulations for a temperature-sensitive functionally graded hydrogel-based micro-channel

Author(s):  
Amir Ghasemkhani ◽  
Hashem Mazaheri ◽  
Arya Amiri

The behavior of a temperature-sensitive micro-channel have been investigated in this study which mainly includes a functionally graded (FG) hydrogel as a sensor or an actuator. In order to achieve this goal, both fluid-structure interaction (FSI) and non-FSI simulations are conducted for hydrogel with homogeneous property distribution as well as FG hydrogels with different number of layers (2–16 layers). Moreover, this study investigates the FG hydrogel cross-linking density that obeys a general exponential form. In addition to all mentioned, the FG hydrogels are considered in both ascending and descending states with vertically and horizontally functionally graded property distributions (VFG and HFG hydrogels). Subsequently, the importance of the difference between the FG and homogenous hydrogels has been highlighted in the findings of the study. Besides, the FSI influence has a vital role in these structures especially once an FG material is utilized. According to the findings, the ascending and descending distributions of the hydrogel properties may significantly affect the micro-channel behavior, especially in horizontally graded type. This process can be done in a way that for descending distribution of HFG there exist no closing state for the micro-channel.

Author(s):  
Ziyi Su ◽  
Kazuaki Inaba ◽  
Amit Karmakar ◽  
Apurba Das

Abstract Functionally graded materials (FGMs) are advanced class of composite materials which can be used as the thermal barrier to protect inner components from the outside high temperature environment. In FGMs, the volume fraction of each constituent can be tailored made across the thickness for desired applications. In this work, the simulation of FGMs in pipes is considered. Despite the wide application of pipes in machinery, those pipes would suffer from many safety problems, such as thermal stress, cavitation, fracture etc. Application of FGMs to the piping systems could lead to some new solutions accounting for safety measures and higher service life. However, the complex phenomena within the fluid structure interaction are hard to describe with the theoretical solution. The visualization of results from simulation will be helpful in understanding the distribution of kinds of physical quantities within the concerned model. For the simulation, FGMs are modeled as the layered structure in the standard finite element method (FEM) package based on FGM constituent law. The free vibration of the FG pipe is simulated and the accuracy of layered model is verified by numerical calculations. Further, based on the layered model, conjugate heat transfer simulations in a heat exchanger with FGMs are conducted.


Author(s):  
G. Papadakis ◽  
C. G. Giannopapa

The paper presents the progress in the development of a novel unified method for solving coupled fluid-structure interaction problems as well as the associated major challenges. The new approach is based on the fact that there are four fundamental equations in continuum mechanics: the continuity equation and the three momentum equations that describe Newton’s second law in three directions. These equations are valid for fluids and solids, the difference being in the constitutive relations that provide the internal stresses in the momentum equations: in solids the stress tensor is a function of the strain tensor while in fluids the viscous stress tensor depends on the rate of strain tensor. The equations are written in such a way that both media have the same unknown variables, namely the three velocity components and pressure. The same discretisation technique (finite volume) and solution method (segregated approach) are used irrespective of the medium. Also the same methodology to handle the pressure-velocity coupling is employed. A common set of variables as well as a unified discretisation and solution method leads to a strong coupling between the two media and is very beneficial for the robustness of the algorithm. Significant challenges include the derivation of consistent boundary conditions for the pressure equation in boundaries with prescribed traction as well as the handling of discontinuity of pressure at the fluid-structure interface.


2016 ◽  
Vol 36 (6) ◽  
Author(s):  
Arezoo Khosravi ◽  
Milad Salimi Bani ◽  
Hossein Bahreinizade ◽  
Alireza Karimi

In the present study, three layers of the ascending aorta in respect to the time and space at various blood pressures have been simulated. Two well-known commercial finite element (FE) software have used to be able to provide a range of reliable numerical results while independent on the software type. The radial displacement compared with the time as well as the peripheral stress and von Mises stress of the aorta have calculated. The aorta model was validated using the differential quadrature method (DQM) solution and, then, in order to design functionally graded materials (FGMs) with different heterogeneous indexes for the artificial vessel, two different materials have been employed. Fluid–structure interaction (FSI) simulation has been carried out on the FGM and a natural vessel of the human body. The heterogeneous index defines the variation of the length in a function. The blood pressure was considered to be a function of both the time and location. Finally, the response characteristics of functionally graded biomaterials (FGBMs) models with different values of heterogeneous material parameters were determined and compared with the behaviour of a natural vessel. The results showed a very good agreement between the numerical findings of the FGM materials and that of the natural vessel. The findings of the present study may have implications not only to understand the performance of different FGMs in bearing the stress and deformation in comparison with the natural human vessels, but also to provide information for the biomaterials expert to be able to select a suitable material as an implant for the aorta.


2020 ◽  
Vol 31 (11) ◽  
pp. 1371-1382
Author(s):  
Elham Khanjani ◽  
Arash Kargar-Estahbanaty ◽  
Ali Taheri ◽  
Mostafa Baghani

Hydrogels have attracted attention in microfluidic applications as sensors and actuators due to their ability to undergo huge volume changes when subjected to environmental stimuli. In this study, a T-junction flow sorter is numerically investigated. Each of the branches involves one hydrogel microvalve with reverse sensitivity to temperature changes. The valve’s functionality is studied with and without considering fluid–structure interaction for various inlet pressures. The results of fluid–structure interaction and non-fluid–structure interaction solutions, such as fluid flow rate and valves close temperature, are presented and compared. In order to reduce hydrogel’s response time, the solution is employed for multiple valves patterns. It can be concluded that the hydrogel deformation due to the fluid pressure has a significant effect on the valves’ operational parameters which cannot be ignored in design and analysis.


2015 ◽  
Vol 14 ◽  
pp. 46-56
Author(s):  
Vandana Sharma ◽  
S.L. Shimi ◽  
Saleem Khan ◽  
Sandeep Arya

In this proposed work, the design and analysis of a flow sensor to be integrated into a micro-channel is presented. A finite element analysis is carried out to simulate fluid-structure interaction and estimate cantilever deflection under different fluidic flows at constant flow rate. The design of device is based on the determination of geometrical dimensions. A mathematical analysis describing the fluid mechanics and their interaction with the beam is also proposed. The mathematical model is done using finite-element analysis, and a complete formulation for design analysis is determined. Finite element method based Comsol Multiphysics simulations are used to optimize the design in order to determine the fluid velocities after interaction with the free end of the micro-cantilever beam. The device is successfully designed for sensing different fluids.


2015 ◽  
Vol 10 ◽  
pp. 768-788 ◽  
Author(s):  
K. Srinivasa Rao ◽  
K. Girija Sravani ◽  
G. Yugandhar ◽  
G. Venkateswara Rao ◽  
V.N. Mani

2020 ◽  
Vol 12 (05) ◽  
pp. 2050057 ◽  
Author(s):  
Hashem Mazaheri ◽  
Amir Ghasemkhani ◽  
Soroush Sabbaghi

In this work, fluid–structure interaction (FSI) simulations, as well as non-FSI ones, are conducted to study the behavior of a functionally graded (FG) pH-sensitive micro-valve. The FEM analysis of the hydrogel is performed in ABAQUS while the fluid domain is analyzed in ANSYS fluent. To investigate the FSI and FG effects, both FSI and non-FSI simulations are performed for pH-sensitive micro-valve with homogeneous cross-linking distribution beside the FG cases. Two simulation domains are coupled by using a third-party software named MpCCI for both FSI and non-FSI simulations. For the FG hydrogel, linear and exponential property distributions are considered. The obtained results show a significant difference between the FG and homogeneous hydrogel behavior for both simulation methods. Additionally, the results emphasize that FSI consideration has a crucial role in the design of these smart devices. Especially, remarkable difference is observed for the closing pH of the micro-valve as well as the flow-rate diagrams. For example, a leakage is observed in FSI simulations for the closing pH of the non-FSI simulations that indicates the importance of the FSI effect. Finally, the effect of the cross-linking density distribution and the inlet pressure of micro-valve are studied and the results are analyzed.


2015 ◽  
Vol 07 (05) ◽  
pp. 1550068 ◽  
Author(s):  
Fouad Erchiqui ◽  
Mhamed Souli ◽  
Toufik Kanit ◽  
Abdellatif Imad ◽  
Boudlal Aziz ◽  
...  

The mechanical properties of Ogden material under biaxial deformation are obtained by using the bubble inflation technique. First, pressure inside the bubble and height at the hemispheric pole are recorded during bubble inflation experiment. Thereafter, Ogden's theory of hyperelasticity is employed to define the constitutive model of flat circular thermoplastic membranes (CTPMs) and nonlinear equilibrium equations of the inflation process are solved using finite difference method with deferred corrections. As a last step, a neuronal algorithm artificial neural network (ANN) model is employed to minimize the difference between calculated and measured parameters to determine material constants for Ogden model. This technique was successfully implemented for acrylonitrile-butadiene-styrene (ABS), at typical thermoforming temperatures, 145°C. When solving for the bubble inflation, the recorded pressure is applied uniformly on the structure. During the process inflation, the pressure is not uniform inside the bubble, thus full gas dynamic equations need to be solved to get the appropriate nonuniform pressure to be applied on the structure. In order to simulate the inflation process accurately, computational fluid dynamics in a moving fluid domain as well as fluid structure interaction (FSI) algorithms need to be performed for accurate pressure prediction and fluid structure interface coupling. Fluid structure interaction solver is then required to couple the dynamic of the inflated gas to structure motion. Recent development has been performed for the simulation of gas dynamic in a moving domain using arbitrary Lagrangian Eulerian (ALE) techniques.


Sign in / Sign up

Export Citation Format

Share Document