scholarly journals Stress-dependent generalized Prandtl–Ishlinskii hysteresis model of a NiTi wire with superelastic behavior

Author(s):  
HouPin Yoong ◽  
ChunYi Su ◽  
KiamBeng Yeo

The extremely useful superelastic behavior of NiTi has been poorly explored because of the limited number of models that can describe the complete hysteretic behavior of NiTi, including a superelastic condition that strongly depends on the applied stress. This paper presents the development of a stress-dependent phenomenological model of NiTi by modifying the existing generalized Prandtl–Ishlinskii (GPI) model. The parameters of the envelop function of the GPI model’s play operator are reformulated as quadratic functions of the applied stress. The stress-dependent GPI model can satisfactorily predict the output strain of a NiTi #6 wire under temperature and stress variation.

Author(s):  
Michela Taló ◽  
Walter Lacarbonara ◽  
Giovanni Formica ◽  
Giulia Lanzara

Nanocomposites made of a hosting polymer matrix integrated with carbon nanotubes as nanofillers exhibit an inherent hysteretic behavior arising from the CNT/matrix frictional sliding. Such stick-slip mechanism is responsible for the high damping capacity of CNT nanocomposites. A full 3D nonlinear constitutive model, framed in the context of the Eshelby-Mori-Tanaka theory, reduced to a 1D phenomenological model is shown to describe accurately the CNT/polymer stick-slip hysteresis. The nonlinear hysteretic response of CNT nanocomposite beams is experimentally characterized via displacement-driven tests in bending mode. The force-displacement cycles are identified via the phenomenological model featuring five independent constitutive parameters. A preliminary parametric study highlights the importance of some key parameters in determining the shape of the hysteresis loops. The parameter identification is performed via one of the variants of a genetic-type differential evolution algorithm. The nanocomposites hysteresis loops are identified with reasonably low mean square errors. Such outcome confirms that the 1D phenomenological model may serve as an effective tool to describe and predict the nanocomposite nonlinear hysteretic behavior towards unprecedented material optimization and design.


2019 ◽  
Vol 9 (4) ◽  
pp. 687 ◽  
Author(s):  
Bin Wang ◽  
Guang Huo ◽  
Yongfeng Sun ◽  
Shansuo Zheng

With the aim to model the seismic behavior of steel reinforced concrete (SRC) frame columns, in this research, hysteresis and skeleton curves were obtained based on the damage test results of SRC frame columns under low cyclic repeat loading and the hysteretic behavior of the frame columns was further analyzed. Then, the skeleton curve and hysteresis loops were further simplified. The simplified skeleton curve model was obtained through the corresponding feature points obtained by mechanical and regression analysis. The nonlinear combination seismic damage index, which was developed by the test results and can well reflect the effect of the loading path and the number of loading cycle of SRC frame columns, was used to establish the cyclic degradation index. The strength and stiffness degradation rule of the SRC frame columns was analyzed further by considering the effect of the accumulated damage caused by an earthquake. Finally, the hysteresis model of the SRC frame columns was established, and the specific hysteresis rules were given. The validity of the developed hysteresis model was verified by e comparison between the calculated results and the test results. The results showed that the model could describe the hysteresis characteristics of the SRC frame columns under cyclic loading and provide guidance for the elastoplastic time-history analysis of these structures.


The response of the screw dislocation core in a body-centred cubic model lattice to a general applied stress tensor is examined by means of computer simulation. The Peierls stress is found to have the symmetry required by Neumann’s principle but is found also to have a very strong dependence on shear components of the applied stress which should not interact with the screw dislocation. Rather than having the constant value suggested by the Schmid law of critical resolved shear stress, the Peierls stress can vary from zero to the theoretical shear strength of the lattice, depending upon the exact nature of the critical applied stress components. Calculations with different interatomic binding potentials show that the Peierls stress variation, while different in detail, remains broadly the same, suggesting an origin in the dislocation core geometry rather than the specific charac­teristics of the force laws. Specialization to the case of uniaxial applied stress shows that the similar Peierls stress variation can nevertheless lead to quite different orientation dependences of the flow stress in different materials. Applications to the problem of brittle fracture and possible sources of the Peierls stress variation are discussed briefly.


2006 ◽  
Vol 326-328 ◽  
pp. 1459-1462
Author(s):  
Young Min Han ◽  
Quoc Hung Nguyen ◽  
Seung Bok Choi ◽  
Kyung Su Kim

This paper experimentally investigates the hysteretic behaviors of yield stress in electrorheological (ER) and magnetorheological (MR) materials which are known as smart materials. As a first step, the PMA-based ER material is prepared by dispersing the chemically synthesized polymethylaniline (PMA) particles into non-conducting oil. For the MR material, commercially available one (Lord MRF-132LD) is chosen for the test. Using the rheometer, the torque resulting from the shear stress of the ER/MR materials is measured, and then the yield stress is calculated from the measured torque. In order to describe the hysteretic behavior of the fielddependent yield stress, a nonlinear hysteresis model of the ER/MR materials is formulated between input (field) and output (yield stress). Subsequently, the Preisach model is identified using experimental first order descending (FOD) curves of yield stress in discrete manner. The effectiveness of the identified hysteresis model is verified in time domain by comparing the predicted field-dependent yield stress with the measured one.


2015 ◽  
Vol 723 ◽  
pp. 793-798
Author(s):  
Shi Peng Feng ◽  
Dong Xu Li

A piezoceramic actuator is widely employed in micropositioning and MEMS. However, the piezoceramic actuators are limited due to the natural hysteresis nonlinearity which affect the accuracy of the actuators in applications. In order to revise the hysteresis nonlinearity, lots of hysteresis models have been proposed such as the Preisach model, the classical Prandtl—Ishlinskii model and so on. While some drawbacks still exist with these models, a generalized hysteresis model for asymmetric hysteresis basing on the classical Prandtl—Ishlinskii model is devised. In the modified model, the exponential functions which contain the amplitude and the frequency of the input voltage and its gain factor are introduced into the NLPO (nonlinearity play operator). As a result, the generalized model in this paper applies to modeling asymmetric hysteresis. This model was identified and simulated using the experimental data by other researchers. At last, the validity and the accuracy of the given model were tested through the experiment of the piezoceramic control.


1991 ◽  
Vol 27 (6) ◽  
pp. 4796-4798 ◽  
Author(s):  
A. Bergqvist ◽  
G. Engdahl

2008 ◽  
Vol 36 (2) ◽  
pp. 108-128
Author(s):  
G. Song ◽  
B. Conard ◽  
S. K. R. Iyengar

Abstract This paper presents the characterization of damping behavior as characterized by hysteresis for farm equipment tires and time domain numerical simulation of off-road tire rolling using finite element techniques. The hysteretic behavior is characterized by the load-displacement curves from static nonrolling vertical loading tests. Using a highly simplified finite element model based solely on tire catalog information and general constructional information, a hysteresis material model is used to simulate the hysteretic load-displacement behavior of farm tires. By choosing appropriate parameters for the hysteresis model, the static nonrolling finite element analyses results correlate very well to the experimental results. The fitted hysteresis material model is then used to simulate the dynamic rolling of a tire dropping off a curb. The bouncing vertical acceleration is of great interest to off-road tires. First, implicit dynamics is used to simulate the rolling using the calibrated hysteresis model. Very good correlations between the simulation results and vehicle test results are obtained. For better off-road rolling performance, the hysteresis model is recalibrated to reduce the vertical acceleration of the tire after the first bounce following the drop-off. The hysteresis model is replicated in explicit dynamics using an Abaqus/Explicit VUMAT subroutine to simulate the dynamic tire rolling behavior. By introducing additional damping and creep dissipation, the vertical acceleration is attenuated in excess of 50% after the first bounce following the drop-off to improve riding comfort. This hysteresis characterization has been shown to give good agreement with test data on nonrolling tests and dynamic drop-off tests. All modeling and solutions were performed using commercially available Abaqus software.


1999 ◽  
Author(s):  
Soon-Hong Lee ◽  
Thomas J. Royston ◽  
Gary Friedman

Abstract Hysteretic behavior in piezoceramic transducers is investigated theoretically and experimentally. The applicability of the rate-independent generalized Maxwell resistive capacitor (MRC) hysteresis model is established. Methods for MRC and inverse MRC online model identification are developed by first establishing that the MRC and its inverse are the same particular cases of the classical Preisach hysteresis model. This enables use of the extensive mathematical framework that has been developed for Preisach models. A method of incorporating the MRC model in a feedforward control scheme for hysteresis compensation is also presented. Experimental studies on a 1-3 piezoceramic composite support the theoretical developments and their applicability to piezoceramics.


Sign in / Sign up

Export Citation Format

Share Document