scholarly journals Continuum Damage-healing Mechanics with Application to Self-healing Composites

2005 ◽  
Vol 14 (1) ◽  
pp. 51-81 ◽  
Author(s):  
Ever J. Barbero ◽  
Fabrizio Greco ◽  
Paolo Lonetti
2018 ◽  
Vol 10 (07) ◽  
pp. 1850077
Author(s):  
A. Kazemi ◽  
M. Baghani ◽  
H. Shahsavari ◽  
S. Sohrabpour

Continuum damage-healing mechanics (CDHM) is used for phenomenological modeling of self-healing materials. Self-healing materials have a structural capability to recover a part of the damage for increasing materials life. In this paper, a semi-analytic modeling for self-healing concrete beam is performed. Along this purpose, an elastic damage-healing model through spectral decomposition technique is utilized to investigate an anisotropic behavior of concrete in tension and compression. We drive an analytical closed-form solution of the self-healing concrete beam. The verification of the solution is shown by solving an example for a simply supported beam having uniformly distributed the load. Finally, a result of a self-healing concrete beam is compared to elastic one to demonstrate the capability of the proposed analytical method in simulating concrete beam behavior. The results show that for the specific geometry, the self-healing concrete beam tolerates 21% more weight, and the deflection of the entire beam up to failure load is about 27% larger than elastic solution under ultimate elastic load for both I-beam and rectangular cross-section. Comparison of Continuum Damage Mechanics (CDM) solution with CDHM solution of beam shows that critical effective damage is decreased by 32.4% for a rectangular cross-section and by 24.2% for I-shape beam made of self-healing concrete.


2018 ◽  
Vol 8 (12) ◽  
pp. 2350 ◽  
Author(s):  
Chahmi Oucif ◽  
Luthfi Mauludin

Over the last several years, self-healing materials have become more and more popular in terms of damage reparation. Moreover, a recent theoretical investigation of super healing materials that aims at repairing and strengthening itself was also developed. This research area is well known by the rich experimental studies compared to the numerical investigations. This paper provides a review of the literature of continuum damage-healing and super healing mechanics of brittle materials based on continuum damage and healing mechanics. This review includes various damage-healing models, methodologies, hypotheses and advances in continuum damage and healing mechanics. The anisotropic formulations of damage and healing mechanics are also highlighted. The objective of this paper is also to review the super healing theory based on continuum damage-healing mechanics and its role in material and structure strengthening. Finally, a conclusion of the reviewed damage-healing models is pointed out and future perspectives are given.


2017 ◽  
Vol 27 (5) ◽  
pp. 754-778 ◽  
Author(s):  
Yihui Pan ◽  
Fang Tian ◽  
Zheng Zhong

In this paper, a continuum damage-healing model is proposed to interpret the damage-healing phenomenon of healing agents based self-healing materials. The plasticity, damage and healing are respectively described by accumulated plastic strain, damage variable and healing variable. Based on the non-equilibrium thermodynamics and the phase field method, the energy dissipation and corresponding kinetic laws of plasticity, damage and healing are respectively obtained. The healing is motivated by the diffusion of healing agents released by capsules or solute atoms. The corresponding process is described by a diffusion equation with chemical reaction. Furthermore, the threshold and the criteria of damage and healing are established for self-healing materials. The theoretical model is then applied to simulate the healing of concentrated and dispersed damage including the cutting damage, the puncture damage, the homogeneous damage under uniaxial tensile stress and the inhomogeneous damage under pure bending. It is demonstrated that the mechanical loading, the accumulated damage and the diffusion of healing agents work together to govern the healing evolution of self-healing materials.


2018 ◽  
Vol 28 (6) ◽  
pp. 896-917 ◽  
Author(s):  
Chahmi Oucif ◽  
George Z Voyiadjis ◽  
Peter I Kattan ◽  
Timon Rabczuk

Self-healing is the capability of a material to heal (repair) damages autogenously and autonomously. New theoretical investigation extended from the healing material which represents a strengthening material was recently proposed. It concerns the theory of super healing. The healing in this case continues beyond what is necessary to recover the original stiffness of the material, and the material becomes able to strengthen itself. In the present work, the definition of the super healing theory is extended and defined based on the elastic stiffness variation. It concerns the degradation, recovery, and strengthening of the elastic stiffness in the case of damage, healing, and super healing materials, respectively. Comparison of the healing and super healing efficiencies between the hypotheses of the elastic strain and elastic energy equivalence is carried out. The classical super healing definition is also extended to generalized nonlinear and quadratic super healing based on elastic stiffness strengthening, and comparison of the super healing behavior in each theory is performed. It is found that the hypothesis of the elastic energy equivalence overestimates both the generalized nonlinear and quadratic super healed elastic stiffness strengthening. In addition, the generalized nonlinear super healing theory gives a high strengthening of the super healed elastic stiffness compared to the quadratic super healing theory in both equivalence hypotheses. It is also demonstrated that both the generalized nonlinear and quadratic super healing theories can be applied in the case of plane stress.


2020 ◽  
pp. 105678952096803
Author(s):  
Qing Chen ◽  
Xiangyong Liu ◽  
Hehua Zhu ◽  
J Woody Ju ◽  
Xie Yongjian ◽  
...  

The self-healing materials have become more and more popular due to their active capacity of repairing the (micro-) damages, such as the (micro-) cracks, the (micro-) voids and the other defects. In this paper, the thermodynamic based damage-healing framework is presented for the hydration induced self-healing composite with a compatible healing variable. The new variable is incorporated to consider the time-dependent properties of the hydration products, with which a new damage healing law is proposed. The hydration kinetics are employed to describe the healing process. The properties of the hydration products are arrived with the multiscale and multilevel homogenization scheme. The presented damage-healing model is applied to an isotropic cementitious composite under the tensile loading histories. The presented framework is compared with the classic continuum damage-healing theory and the experimental data. The results show that the presented damage-healing model is capable of describing the hydration induced self-healing of the cementitious composite. It can describe the behavior of the partially and fully healed concrete material. The effects of the healing time and the compatible healing variables on the damage-healing results are investigated based on our proposed framework.


2021 ◽  
pp. 105678952199187
Author(s):  
Hehua Zhu ◽  
Qing Chen ◽  
J Woody Ju ◽  
Zhiguo Yan ◽  
Zhengwu Jiang

The electrochemical deposition method is a promising approach to repair the deteriorated concrete in the aqueous environment. In this paper, a continuum damage-healing framework is presented for the electrochemical deposition method based on the multi-field coupling growth process of the electrochemical deposition products. The ion transportation and the electrode reactions are characterized by employing the Nernst-Planck equation and the current conservation equation. The level set method is adopted to capture the growth of the deposition products. Based on the deposition process, a new empirical healing law is presented, with which a new continuum damage-healing framework is presented for electrochemical deposition method. Numerical examples are conducted by applying the presented framework to the damaged cementitious composite under the tensile loadings. The presented framework is compared with the classic continuum damage-healing theory and the experimental data. The results show that the presented models can describe the electrochemical deposition method induced damage-healing for the cementitious composite. Furthermore, the effects of the healing time, the solution concentration and the external voltage on the damage-healing behaviors are investigated based on our proposed framework.


2021 ◽  
pp. 105678952110112
Author(s):  
Kaihang Han ◽  
Jiann-Wen Woody Ju ◽  
Yinghui Zhu ◽  
Hao Zhang ◽  
Tien-Shu Chang ◽  
...  

The cementitious composites with microencapsulated healing agents have become a class of hotspots in the field of construction materials, and they have very broad application prospects and research values. The in-depth study on multi-scale mechanical behaviors of microencapsulated self-healing cementitious composites is critical to quantitatively account for the mechanical response during the damage-healing process. This paper proposes a three-dimensional evolutionary micromechanical model to quantitatively explain the self-healing effects of microencapsulated healing agents on the damage induced by microcracks. By virtue of the proposed 3 D micromechanical model, the evolutionary domains of microcrack growth (DMG) and corresponding compliances of the initial, extended and repaired phases are obtained. Moreover, the elaborate studies are conducted to inspect the effects of various system parameters involving the healing efficiency, fracture toughness and preloading-induced damage degrees on the compliances and stress-strain relations. The results indicate that relatively significant healing efficiency, preloading-induced damage degree and the fracture toughness of polymerized healing agent with the matrix will lead to a higher compressive strength and stiffness. However, the specimen will break owing to the nucleated microcracks rather than the repaired kinked microcracks. Further, excessive higher values of healing efficiency, preloading-induced damage degree and the fracture toughness of polymerized healing agent with the matrix will not affect the compressive strength of the cementitious composites. Therefore, a stronger matrix is required. To achieve the desired healing effects, the specific parameters of both the matrix and microcapsules should be selected prudently.


2016 ◽  
Vol 26 (1) ◽  
pp. 50-103 ◽  
Author(s):  
George Z Voyiadjis ◽  
Peter I Kattan

In this work several new and fundamental concepts are proposed within the framework of continuum damage mechanics. These concepts deal primarily with the nature of the two processes of damage and healing along with introducing a consistent and systematic definition for the concepts of damageability and integrity of materials. Toward this end, seven sections are presented as follows: “The logarithmic damage variable” section introduces the logarithmic and exponential damage variables and makes comparisons with the classical damage variable. In “Integrity and damageability of materials” section a new formulation for damage mechanics is presented in which the two angles of damage–integrity and healing–damageability are introduced. It is shown that both the damage variable and the integrity variable can be derived from the damage–integrity angle while the healing variable and damageability variable are derived from the healing–damageability angle. “The integrity field” section introduces the new concept of the integrity field while “The healing field” section introduces the new concept of the healing field. These two fields are introduced as a generalization of the classical concepts of damage and integrity. “Unhealable damage and nondamageable integrity” section introduces the new and necessary concept of unrecoverable damage or unhealable damage. In this section the concept of permanent integrity or nondamageable integrity is also presented. In “Generalized nonlinear healing” section generalized healing is presented where a distinction is clearly made between linear healing and nonlinear healing. As an example of nonlinear healing the equations of quadratic healing are derived. Finally in “Dissection of the healing process” section a complete and logical/mathematical dissection is made of the healing process. It is hoped that these new and fundamental concepts will pave the way for new, consistent, and holistic avenues in research in damage mechanics and characterization of materials.


Sign in / Sign up

Export Citation Format

Share Document