Study on long-term uniaxial compression creep mechanical behavior of rocksalt-mudstone combined body

2021 ◽  
pp. 105678952110354
Author(s):  
Cheng Lyu ◽  
Jianfeng Liu ◽  
Yi Ren ◽  
Chao Liang ◽  
Qiangxing Zhang

Rocksalt and mudstone are usually under common stress in salt storage caverns, resulting in different mechanical properties from pure rocksalt and mudstone. To accurately obtain the creep mechanical characteristics of rocksalt-mudstone combined body, we have made three different combinations. The long-term creep experiment of bedded rocks can more closely reflect the long-term mechanical behavior of surrounding rock of salt storage caverns. The experimental results indicated that the long-term creep curve of the combined body includes initial and steady creep stages, and even includes accelerated creep stage. The strain of mudstone layer in the combined body was lower than that of rocksalt because of the higher strength. With the increase of the height ratio of mudstone, the creep strain of the combined body and each rock layer decreased, but the creep rate increased. A new nonlinear creep-damage constitutive model was proposed, which can well describe the creep evolution characteristics of the experiment. Compared with the fitting curves of classical Burgers and Nishihara creep constitutive models, it is revealed that the proposed model is most consistent with the experimental data. The duration of the long-term creep experiment under lower stress has a highly significant effect on the accuracy of predicting rock creep results. This research will contribute to a deeper understanding of the long-term creep characteristics of bedded rocks in salt storage caverns.

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Ruihong Wang ◽  
Yuzhou Jiang ◽  
Chao Yang ◽  
Fei Huang ◽  
Yuxuan Wang

Triaxial unloading creep tests of layered rock specimen of Jinping II hydropower station were carried out using the rock creep testing machine; thus the creep deformation curves under different confining pressures were acquired. The test results showed that, in addition to the obvious unloading creep characteristics of rock specimen, the nonlinear accelerating creep deformation emerged under the last stage confining stress condition, and the whole creep curves presented the typical rock creep three stages. On the other hand, the Burgers creep model constitutive equations under the three-dimensional stress state were also deduced. Based on the creep test data, through identifying the creep parameters using the optimized algorithm, the corresponding parameters of triaxial creep constitutive model were obtained. By comparative analysis of creep parameters, it can be concluded that creep parameters nonlinearly degraded with the decrease of confining pressure gradually. Moreover, when the load is below the long-term strength of rock, the creep parameters are only related to the unloading ratio, while in the case that the load is larger than the long-term strength of rock, the unloading creep parameters are related to both unloading ratio and creep time. According to the creep parameters under the first-stage stress level, and through introducing unloading ratio damage factor to describe the degrading rule of creep parameters on other stress levels, the method of uniformity determining the creep parameters was proposed. It was assumed that the damage degree in rock interior was relative to both unloading ratio and creep time; a nonlinear creep damage model of rock under unloading was proposed, which could better reflect the nonlinear characteristics of rock creep. The results showed that rock nonlinear creep damage model achieved perfectly consistent results with the creep test.


2018 ◽  
Vol 89 (8) ◽  
pp. 1472-1487
Author(s):  
Krzysztof Zerdzicki ◽  
Pawel Klosowski ◽  
Krzysztof Woznica

In this paper the coupled service (constructional tension) and environmental (sunlight, rainfalls, temperature variations) ageing influence on the polyester-reinforced polyvinyl chloride (PVC)-coated fabric VALMEX is studied. Two cases of the same fabric have been analyzed: one USED for 20 years on the real construction of the Forest Opera in Sopot (Poland), and one kept as a spare material (NOT USED). The following tests have been conducted: uniaxial tensile, biaxial tensile and long-term creep tests. The obtained results have been used for the parameter identification of the piecewise non-linear, Burgers and Bodner–Partom models. Next, the analysis of the influence of environmental conditions on the parameters of these models has been made. It has been concluded that some parameters are more and the others are less sensitive to the exposure to environmental and mechanical conditions. The change of material parameters for fill threads (due to larger deformation) is higher. The obtained results may be useful in the durability evaluation of the textile membranes reinforced with polyester threads and PVC coated. All the constitutive models with the identified parameters may be used for the numerical analysis of structures made of fabrics at the service beginning and after long-term usage.


2018 ◽  
Vol 28 (6) ◽  
pp. 877-895 ◽  
Author(s):  
J Christopher ◽  
BK Choudhary

A detailed analysis has been performed for the prediction of long-term creep behaviour of tempered martensitic Grade 91 steel at 873 K using the microstructure-based creep damage mechanics approach. Necessary modifications have been made into the original kinetic creep law proposed by Dyson and McLean in order to account for the influence of microstructural damages arising from the coarsening of M23C6 and conversion of useful MX precipitates into deleterious Z-phase on creep behaviour of the steel. An exponential rate relationship has been introduced for the evolution of number density of MX precipitates with time. It has been shown that the developed model adequately predicts the experimental long-term creep strain–time as well as creep rate-time data. The role of Z-phase on long-term creep behaviour of Grade 91 steel has also been discussed.


Author(s):  
Gerry May

Pipe support functionality is critical to the long term life of piping system. Spring supports degrade with time due to flexing in the spring and wear in constant support bearings. It is not unusual to measure constant support hangers with resistance 25% to 50% different than the design load. This leads to excessive sustained pipe stress, pipe sag (or uplift), and in high temperature systems, accelerated creep damage. Supports may also not move properly from shut down to full operation, which can create excessive fatigue stress, failed hanger components, and other piping system damage. In-situ hanger testing has been found to be a reliable and cost effective method to determine the functionality of pipe supports. Results are used as input to set revised recommended loads, and to determine if any hangers need to be replaced. This paper provides examples of the types of problems that are often found in the field, the method to test, and typical resolutions to maximize the pipe life and minimize the risk of failure.


Author(s):  
Jie Zhang ◽  
Zhengfei Hu ◽  
Guoli Zhai ◽  
Zhen Zhang ◽  
Ziyi Gao

Author(s):  
Nazrul Islam ◽  
David J. Dewees ◽  
Tasnim Hassan

A continuum damage mechanics (CDM) coupled unified viscoplasticity model has been developed to predict the creep-fatigue life of modified Grade 91 steel. A tertiary creep model termed MPC-Omega codified in Part 10 of API (and also implemented in the ASME BP&V Code for Grade 22V and more recently Grade 91 Steel) is also employed for creep damage evaluation. As MPC-Omega has a direct relationship with Larson-Miller parameter (LMP) coefficients, creep damage coefficients in the unified constitutive model (UCM) are tied with MPC-Omega coefficients in order to utilize WRC and API 579-1 Grade 91 creep rupture database. The model is validated against long-term creep, LCF, creep-fatigue and TMF experimental responses at T = 20–600°C.


2007 ◽  
Vol 561-565 ◽  
pp. 2217-2220 ◽  
Author(s):  
Hassan Ghassemi Armaki ◽  
Kyosuke Yoshimi ◽  
Kouichi Maruyama ◽  
Mitsuru Yoshizawa ◽  
Masaaki Igarashi

The apparent activation energy for rupture life sometimes changes from a high value of short term creep to a low value of long term creep. This change results in overestimation of rupture life recognized recently in advanced high Cr ferritic steels. The present study examined how to detect the decrease of activation energy in 9-12 %Cr steels with tempered martensitic lath microstructure. During aging without stress hardness of the tempered martensite microstructures remains almost constant in short term, whereas it decreases with increasing time after long term exposure. The onset of hardness drop can be a good measure of the decrease of activation energy. Causes of the hardness drop and the decrease of activation energy are discussed.


Sign in / Sign up

Export Citation Format

Share Document