creep experiment
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 4)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
pp. 105678952110354
Author(s):  
Cheng Lyu ◽  
Jianfeng Liu ◽  
Yi Ren ◽  
Chao Liang ◽  
Qiangxing Zhang

Rocksalt and mudstone are usually under common stress in salt storage caverns, resulting in different mechanical properties from pure rocksalt and mudstone. To accurately obtain the creep mechanical characteristics of rocksalt-mudstone combined body, we have made three different combinations. The long-term creep experiment of bedded rocks can more closely reflect the long-term mechanical behavior of surrounding rock of salt storage caverns. The experimental results indicated that the long-term creep curve of the combined body includes initial and steady creep stages, and even includes accelerated creep stage. The strain of mudstone layer in the combined body was lower than that of rocksalt because of the higher strength. With the increase of the height ratio of mudstone, the creep strain of the combined body and each rock layer decreased, but the creep rate increased. A new nonlinear creep-damage constitutive model was proposed, which can well describe the creep evolution characteristics of the experiment. Compared with the fitting curves of classical Burgers and Nishihara creep constitutive models, it is revealed that the proposed model is most consistent with the experimental data. The duration of the long-term creep experiment under lower stress has a highly significant effect on the accuracy of predicting rock creep results. This research will contribute to a deeper understanding of the long-term creep characteristics of bedded rocks in salt storage caverns.



2021 ◽  
Author(s):  
Alexander Fedorov ◽  
Kevin Zwijsen ◽  
Sander Van Til
Keyword(s):  


2021 ◽  
pp. 117096
Author(s):  
Nargisse Khiara ◽  
Fabien Onimus ◽  
Stéphanie Jublot-Leclerc ◽  
Thomas Jourdan ◽  
Thomas Pardoen ◽  
...  




2020 ◽  
Vol 2020 ◽  
pp. 1-5
Author(s):  
Liwu Jiang ◽  
Xuezheng Dou ◽  
Meiling Wu

Ni3Al-based single crystal alloy IC6SX was prepared by seed crystal method. The effect of different stress conditions on creep behavior of this alloy at 980°C was investigated. The results showed that the creep life of this alloy at 980°C decreased significantly with the increase of stress. When the stress increased from 180 MPa to 230 MPa, the creep life dropped from 245.5 h to 69.3 h, and the steady-state creep rate increased slightly but not significantly. Meanwhile, the morphology of γ ′ phase and dislocation after creep were studied. The results showed that with the increase of stress, the density of dislocations in the γ ′ phase increased gradually, the strength of this alloy decreased gradually, so the creep life decreased significantly. The Y-NiMo phase resolved from the γ phase decreased gradually as the creep life decreased. The creep experiment of the alloy was carried out at 980°C. Due to the higher temperature, the diffusion of atoms in this alloy became faster. Deformation was not only caused by the slippage of dislocations in the crystal but also by the diffusion of atoms. Therefore, the creep mechanism of single crystal alloy IC6SX at this temperature is a mixed mechanism of dislocation glide and diffusion.



2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jun-guang Wang ◽  
Qing-lin Sun ◽  
Bing Liang ◽  
Peng-jin Yang ◽  
Qing-rong Yu


Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3357
Author(s):  
Seung-Gyu Kim ◽  
Yeong-Seong Park ◽  
Yong-Hak Lee

Three types of creep experiments of compression, tension, and bending were implemented to identify quantitative relations among the three types of creep under drying atmospheric conditions. In case of the bending creep experiment, two types of unreinforced concrete beams with similar dimensions were cast for use in the beam creep and shrinkage tests. The variations in the shrinkage strain within the beam depth were measured to evaluate the effect of the shrinkage variations on the bending creep strain. The beam creep strain measured within the beam depth was composed of uniform and skewed parts. The skewed parts of the creep strain were found to be dominant whereas the uniform parts were small enough to be neglected in the bending creep evaluation. This indicated that the compressive bending creep at the top surface was close to the tensile bending creep at the bottom surface. The ratios of tensile and bending creep strains to compressive creep strain were approximately 2.9 and 2.3, respectively, and the ratio of bending creep strain to tensile creep strain was approximately 0.8. Particular attention is laid on the close agreement between tensile and compressive bending creep strains even if the creep in tension is 2.9 times larger than the creep strain in compression.



2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Yongyan Wang ◽  
Hongwei Wang ◽  
Xiao Shi

In order to investigate the influence of temperature, confining pressure, and preexisting fissure on creep characteristics of rock mass, multistage creep experiments were performed on shale-like material, with preexisting fissure under different temperatures and confining pressures. The results showed that new microcracks generated and propagated with the increase of temperature in both uniaxial and triaxial creep experiments, and the generation and propagation were most pronounced at 60°C and least at 20∼50°C in uniaxial creep experiments. The generation and propagation were restricted by confining pressure. Temperature had less influence on the creep strain rate in triaxial creep experiment, whereas it had a significant influence on the steady-state creep rate in uniaxial creep experiment. The influence of confining pressure on the steady-state creep rate was slight when confining pressure was 1 MPa, whereas it was obvious when confining pressure was 3∼7 MPa. The closure of preexisting fissure promoted the creep strain rate, and the closure was incomplete when confining pressure was below 3 MPa, whereas it was complete when confining pressure at 5 and 7 MPa.



2018 ◽  
Vol 36 (1) ◽  
pp. 27-34
Author(s):  
Xiang Lan ◽  
Hong Xu ◽  
Yongzhong Ni ◽  
Xueping Mao


2014 ◽  
Vol 60 (3) ◽  
pp. 28-36 ◽  
Author(s):  
Marianna Hundáková ◽  
Marta Valášková ◽  
Magda Samlíková ◽  
Erich Pazdziora

Abstract Vermiculite (Ver) enriched with silver and copper was used as nanofiller to the polyethylene (PE) matrix. Specifically, the low density polyethylene (LDPE) was chosen as a matrix. The samples Ver-Ag,Cu were prepared by shaking of Ver with the aqueous solutions of silver and copper nitrate. The mixtures of the Ver nanofillers and PE were homogenized by melt compounding technique and further thin plates were pressed from stiff matter of PE with Ver nanofiller. The exfoliation of the powdery Ver nanofillers in PE matrix was characterized by the X-ray diffraction analysis of thin plates. Distribution of Ver nanofiller in PE matrix was observed by Light microscopy. The reinforcing effect of nanofillers onto PE matrix was studied by creep experiment. Antibacterial activity of powder Ver-Ag,Cu samples and surfaces of PE/Ver-Ag,Cu samples was tested on the Gram-positive bacteria Enterococcus faecalis. All tested PE/Ver-Ag,Cu surfaces showed good antibacterial behaviour after 24 h in comparison to pure PE. The number of colonies decreased from the countless number to several hundred colonies.



Sign in / Sign up

Export Citation Format

Share Document