Drivers’ Gaze Behaviors are Influenced by Vehicle Position

Author(s):  
Yuki Okafuji ◽  
Takahiro Wada ◽  
Toshihito Sugiura ◽  
Kazuomi Murakami ◽  
Hiroyuki Ishida

Drivers’ gaze behaviors in naturalistic and simulated driving tasks have been investigated for decades. Many studies focus on driving environment to explain a driver’s gaze. However, if there is a great need to use compensatory steering for lane-keeping, drivers could preferentially acquire information directly required for the task. Therefore, we assumed that a driver’s gaze behavior was influenced not only by the environment but also the vehicle position, especially the lateral position. To verify our hypothesis, we carried out a long-time driving simulator experiment, and the gaze behaviors of two participating drivers were analyzed. Results showed that gaze behavior—the fixation distance and the lateral deviation of the fixation—was influenced by the lateral deviation of the vehicle. Consequently, we discussed processes that determined drivers’ gaze behaviors.

Author(s):  
Jeroen Roozendaal ◽  
Emma Johansson ◽  
Joost de Winter ◽  
David Abbink ◽  
Sebastiaan Petermeijer

Objective This study aims to compare the effectiveness and subjective acceptance of three designs for haptic lane-keeping assistance in truck driving. Background Haptic lane-keeping assistance provides steering torques toward a reference trajectory, either continuously or only when exceeding a bandwidth. These approaches have been previously investigated in driving simulators, but it is unclear how these generalize toward real-life truck driving. Method Three haptic lane-keeping algorithms to assist truck drivers were evaluated on a 6.3-km-long oval-shaped test track: (1) a single-bandwidth (SB) algorithm, which activated assistance torques when the predicted lateral deviation from lane center exceeded 0.4 m; (2) a double-bandwidth (DB) algorithm, which activated as SB, but deactivated after returning within 0.15 m lateral deviation; and (3) an algorithm providing assistance torques continuously (Cont) toward the lane center. Fifteen participants drove four trials each, one trial without and one for each haptic assistance design. Furthermore, participants drove with and without a concurrent visually distracting task. Results Compared to unsupported driving, all three assistance systems provided similar safety benefits in terms of decreased absolute lateral position and number of lane departures. Participants reported higher satisfaction and usability for Cont compared to SB. Conclusion The continuous assistance was better accepted than bandwidth assistance, a finding consistent with prior driving simulator research. Research is still needed to investigate the long-term effects of haptic assistance on reliance and after-effects. Application The present results are useful for designers of haptic lane-keeping assistance, as driver acceptance and performance are determinants of reliance and safety, respectively.


Author(s):  
Erika E. Miller ◽  
Linda Ng Boyle

Objective: A driving simulator study was conducted to evaluate the longitudinal effects of an intervention and withdrawal of a lane keeping system on driving performance and cognitive workload. Background: Autonomous vehicle systems are being implemented into the vehicle fleet. However, limited research exists in understanding the carryover effects of long-term exposure. Methods: Forty-eight participants (30 treatment, 18 control) completed eight drives across three separate days in a driving simulator. The treatment group had an intervention and withdrawal of a lane keeping system. Changes in driving performance (standard deviation of lateral position [SDLP] and mean time to collision [TTC]) and cognitive workload (response time and miss rate to a detection response task) were modeled using mixed effects linear and negative binomial regression. Results: Drivers exposed to the lane keeping system had an increase in SDLP after the system was withdrawn relative to their baseline. Drivers with lane keeping had decreased mean TTC during and after system withdrawal compared with manual drivers. There was an increase in cognitive workload when the lane keeping system was withdrawn relative to when the system was engaged. Conclusion: Behavioral adaptations in driving performance and cognitive workload were present during automation and persisted after the automation was withdrawn. Application: The findings of this research emphasize the importance to consider the effects of skill atrophy and misplaced trust due to semi-autonomous vehicle systems. Designers and policymakers can utilize this for system alerts and training.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sayako Ueda ◽  
Hiroyuki Sakai ◽  
Takatsune Kumada

AbstractThe aim of this study is to demonstrate the potential of sensory substitution/augmentation (SS/A) techniques for driver assistance systems in a simulated driving environment. Using a group-comparison design, we examined lane-keeping skill acquisition in a driving simulator that can provide information regarding vehicle lateral position by changing the binaural balance of auditory white noise delivered to the driver. Consequently, lane-keeping accuracy was significantly degraded when the lower visual scene (proximal part of the road) was occluded, suggesting it conveyed critical visual information necessary for lane keeping. After 40 minutes of training with auditory cueing of vehicle lateral position, lane-keeping accuracy returned to the baseline (normal driving) level. This indicates that auditory cueing can compensate for the loss of visual information. Taken together, our data suggest that auditory cueing of vehicle lateral position is sufficient for lane-keeping skill acquisition and that SS/A techniques can potentially be used for the development of driver assistance systems, particularly for situations where immediate time-sensitive actions are required in response to rapidly changing sensory information. Although this study is the first to apply SS/A techniques to driver assistance, further studies are however required to establish the generalizability of the findings to real-world settings.


2002 ◽  
Vol 94 (2) ◽  
pp. 363-379 ◽  
Author(s):  
James W. Jenness ◽  
Raymond J. Lattanzio ◽  
Maura O'Toole ◽  
Nancy Taylor ◽  
Christina Pax

We measured driving performance (lane-keeping errors, driving times, and glances away from the road scene) in a video driving simulator for 24 volunteers who each drove alone on a 10.6-km multicurved course while simultaneously placing calls on a mobile phone subscribed to a voice-activated dialing system. Driving performance also was measured for the same distance while participants manually dialed phone numbers and while they drove without dialing. There were 22% fewer lane-keeping errors ( p<.01) and 56% fewer glances away from [he road scene ( p<.01) when they used voice-activated dialing as compared to manual dialing. Significantly longer driving times in both of the dialing conditions as compared to the No Dialing condition are discussed in terms of the hypothesis that drivers decrease driving speed to compensate for the demands of the secondary phone tasks.


Author(s):  
Sami Mecheri ◽  
Régis Lobjois

Objective: The aim of this study was to investigate steering control in a low-cost driving simulator with and without a virtual vehicle cab. Background: In low-cost simulators, the lack of a vehicle cab denies driver access to vehicle width, which could affect steering control, insofar as locomotor adjustments are known to be based on action-scaled visual judgments of the environment. Method: Two experiments were conducted in which steering control with and without a virtual vehicle cab was investigated in a within-subject design, using cornering and straight-lane-keeping tasks. Results: Driving around curves without vehicle cab information made drivers deviate more from the lane center toward the inner edge in right (virtual cab = 4 ± 19 cm; no cab = 42 ± 28 cm; at the apex of the curve, p < .001) but not in left curves. More lateral deviation from the lane center toward the edge line was also found in driving without the virtual cab on straight roads (virtual cab = 21 ± 28 cm; no cab = 36 ± 27 cm; p < .001), whereas driving stability and presence ratings were not affected. In both experiments, the greater lateral deviation in the no-cab condition led to significantly more time driving off the lane. Conclusion: The findings strongly suggest that without cab information, participants underestimate the distance to the right edge of the car (in contrast to the left edge) and thus vehicle width. This produces considerable differences in the steering trajectory. Application: Providing a virtual vehicle cab must be encouraged for more effectively capturing drivers’ steering control in low-cost simulators.


2013 ◽  
Vol 9 (2) ◽  
pp. 173-186 ◽  
Author(s):  
Mari Wiklund

Asperger syndrome (AS) is a form of high-functioning autism characterized by qualitative impairment in social interaction. People afflicted with AS typically have abnormal nonverbal behaviors which are often manifested by avoiding eye contact. Gaze constitutes an important interactional resource, and an AS person’s tendency to avoid eye contact may affect the fluidity of conversations and cause misunderstandings. For this reason, it is important to know the precise ways in which this avoidance is done, and in what ways it affects the interaction. The objective of this article is to describe the gaze behavior of preadolescent AS children in institutional multiparty conversations. Methodologically, the study is based on conversation analysis and a multimodal study of interaction. The findings show that three main patterns are used for avoiding eye contact: 1) fixing one’s gaze straight ahead; 2) letting one’s gaze wander around; and 3) looking at one’s own hands when speaking. The informants of this study do not look at the interlocutors at all in the beginning or the middle of their turn. However, sometimes they turn to look at the interlocutors at the end of their turn. This proves that these children are able to use gaze as a source of feedback. When listening, looking at the speaker also seems to be easier for them than looking at the listeners when speaking.


Author(s):  
Alejandro A. Arca ◽  
Kaitlin M. Stanford ◽  
Mustapha Mouloua

The current study was designed to empirically examine the effects of individual differences in attention and memory deficits on driver distraction. Forty-eight participants consisting of 37 non-ADHD and 11 ADHD drivers were tested in a medium fidelity GE-ISIM driving simulator. All participants took part in a series of simulated driving scenarios involving both high and low traffic conditions in conjunction with completing a 20-Questions task either by text- message or phone-call. Measures of UFOV, simulated driving, heart rate variability, and subjective (NASA TLX) workload performance were recorded for each of the experimental tasks. It was hypothesized that ADHD diagnosis, type of cellular distraction, and traffic density would affect driving performance as measured by driving performance, workload assessment, and physiological measures. Preliminary results indicated that ADHD diagnosis, type of cellular distraction, and traffic density affected the performance of the secondary task. These results provide further evidence for the deleterious effects of cellphone use on driver distraction, especially for drivers who are diagnosed with attention-deficit and memory capacity deficits. Theoretical and practical implications are discussed, and directions for future research are also presented.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5178
Author(s):  
Sangbong Yoo ◽  
Seongmin Jeong ◽  
Seokyeon Kim ◽  
Yun Jang

Gaze movement and visual stimuli have been utilized to analyze human visual attention intuitively. Gaze behavior studies mainly show statistical analyses of eye movements and human visual attention. During these analyses, eye movement data and the saliency map are presented to the analysts as separate views or merged views. However, the analysts become frustrated when they need to memorize all of the separate views or when the eye movements obscure the saliency map in the merged views. Therefore, it is not easy to analyze how visual stimuli affect gaze movements since existing techniques focus excessively on the eye movement data. In this paper, we propose a novel visualization technique for analyzing gaze behavior using saliency features as visual clues to express the visual attention of an observer. The visual clues that represent visual attention are analyzed to reveal which saliency features are prominent for the visual stimulus analysis. We visualize the gaze data with the saliency features to interpret the visual attention. We analyze the gaze behavior with the proposed visualization to evaluate that our approach to embedding saliency features within the visualization supports us to understand the visual attention of an observer.


Author(s):  
Rafael Delpiano

There is growing interest in understanding the lateral dimension of traffic. This trend has been motivated by the detection of phenomena unexplained by traditional models and the emergence of new technologies. Previous attempts to address this dimension have focused on lane-changing and non-lane-based traffic. The literature on vehicles keeping their lanes has generally been limited to simple statistics on vehicle position while models assume vehicles stay perfectly centered. Previously the author developed a two-dimensional traffic model aiming to capture such behavior qualitatively. Still pending is a deeper, more accurate comprehension and modeling of the relationships between variables in both axes. The present paper is based on the Next Generation SIMulation (NGSIM) datasets. It was found that lateral position is highly dependent on the longitudinal position, a phenomenon consistent with data capture from multiple cameras. A methodology is proposed to alleviate this problem. It was also discovered that the standard deviation of lateral velocity grows with longitudinal velocity and that the average lateral position varies with longitudinal velocity by up to 8 cm, possibly reflecting greater caution in overtaking. Random walk models were proposed and calibrated to reproduce some of the characteristics measured. It was determined that drivers’ response is much more sensitive to the lateral velocity than to position. These results provide a basis for further advances in understanding the lateral dimension. It is hoped that such comprehension will facilitate the design of autonomous vehicle algorithms that are friendlier to both passengers and the occupants of surrounding vehicles.


2014 ◽  
Vol 8 (1) ◽  
Author(s):  
Fabio E Fontana ◽  
Alexandria Uding ◽  
Andrew Cleneden ◽  
Lindsey Cain ◽  
Lea Ann Shaddox ◽  
...  

The purpose of this project was to compare the gaze behavior of older adults to young adults during locomotor tasks requiring participants to change the direction and vary the speed of walking.Older adults were further divided into high- and low-risk of falling groups based on scores in the Berg balance scale and pre-established risk factor criteria. Gaze behavior was measured using the applied sciences eye tracking system as participants walked under four different conditions. The results suggest that, independent of group or target, fixations on target were shorter, the faster participants walked. Results also revealed that older adults at high-risk of falling tended to move their gaze off the to-be-stepped-on target before actually making heel contact with the target, whereas the young and older adults at low-risk of falling did not. Based on these results we recommend warning older adults about the negative effects of walking speed on their ability to recognize and comprehend the challenges on the ground ahead by suggesting they slow down when walking. Another strategy is to train older adults to make heel contact with the ground before transferring their gaze to another aspect of the environment, which may serve to reduce the likelihood of tripping.


Sign in / Sign up

Export Citation Format

Share Document