Center of Pressure Trajectory and Spatiotemporal Gait Parameters When Walking with Limited Knee Flexion

Author(s):  
Seobin Choi ◽  
Jieon Lee ◽  
Gwanseob Shin

Stiff-knee, which indicates reduced range of knee flexion, may decrease gait stability. Although it is closely related to an increase in fall risk, the effect of limited knee flexion on the balance capacity during walking has not been well studied. This study aimed at examining how walking with limited knee flexion would influence the center of pressure (COP) trajectory and spatiotemporal gait parameters. Sixteen healthy young participants conducted four different walking conditions: normal walking and walking with limited knee flexion of their left knee up to 40 and 20 degrees, respectively. Results show that the participants walked significantly (p<0.05) slower with shorter stride length, wider step width, less cadence, and decreased stance phase when walking with limited knee flexion, compared to normal walking. The increase in the asymmetry and variability of the COP was also observed. It indicates that limited knee flexion during walking might affect the dynamic balance.

2016 ◽  
Vol 40 (6) ◽  
pp. 689-695 ◽  
Author(s):  
Mokhtar Arazpour ◽  
Fardin Ahmadi ◽  
Mahmood Bahramizadeh ◽  
Mohammad Samadian ◽  
Mohammad Ebrahim Mousavi ◽  
...  

Background:Compared to able-bodied subjects, subjects with post-polio syndrome and poliomyelitis demonstrate a preference for weight-bearing on the non-paretic limb, causing gait asymmetry.Objectives:The purpose of this study was to evaluate the gait symmetry of the poliomyelitis subjects when ambulating with either a drop-locked knee–ankle–foot orthosis or a newly developed powered knee–ankle–foot orthosis.Study design:Quasi experimental study.Methods:Seven subjects with poliomyelitis who routinely wore conventional knee–ankle–foot orthoses participated in this study and received training to enable them to ambulate with the powered knee–ankle–foot orthosis on level ground, prior to gait analysis.Results:There were no significant differences in the gait symmetry index of step length ( p = 0.085), stance time ( p = 0.082), double-limb support time ( p = 0.929), or speed of walking ( p = 0.325) between the two test conditions. However, using the new powered knee–ankle–foot orthosis improved the symmetry index in step width ( p = 0.037), swing time ( p = 0.014), stance phase percentage ( p = 0.008), and knee flexion during swing phase ( p ⩽ 0.001) compared to wearing the drop-locked knee–ankle–foot orthosis.Conclusion:The use of a powered knee–ankle–foot orthosis for ambulation by poliomyelitis subjects affects gait symmetry in the base of support, swing time, stance phase percentage, and knee flexion during swing phase.Clinical relevanceA new powered knee–ankle–foot orthosis can improve gait symmetry for poliomyelitis subjects by influencing step width, swing time, stance time percentage, and knee flexion during swing phase when compared to ambulating with a drop-locked knee–ankle–foot orthosis.


2021 ◽  
Vol 2021 (preprint) ◽  
pp. 0000-0000
Author(s):  
Mark A. Lyle ◽  
Jake C. Jensen ◽  
Jennifer L. Hunnicutt ◽  
Jonathan J. Brown ◽  
Cynthia P. Chambliss ◽  
...  

ABSTRACT Context: Altered knee moments are common during gait in patients following anterior cruciate ligament reconstruction (ACLR). Modifiable factors that influence knee moments and are feasible to record in clinical settings such as strength and spatiotemporal parameters (e.g. step length, step width) have not been identified in persons after ACLR. Objective: The objective was to identify strength and spatiotemporal gait parameters that can predict knee moments in persons after ACLR. Design: Cross-Sectional Study Setting: Laboratory Patients: Twenty-three participants with ACLR (14.4 ± 17.2 months post-ACLR) participated. Main Outcome Measures: Peak knee flexion and adduction moments were measured while walking at self-selected speeds. Spatiotemporal gait parameters were recorded with a pressure walkway, and peak isokinetic knee extensor strength (60°/s) was recorded on a dynamometer. Pearson coefficients were used to examine the association of peak knee moments with strength and gait parameters. Variables correlated with peak knee flexion and adduction moments were entered into a stepwise regression model. Results: Step width and knee extensor strength were the strongest predictors of knee flexion moment accounting for 44% of data variance, whereas stance phase time and step width were the strongest predictors of knee adduction moment explaining 62% of data variance. Conclusions: The spatiotemporal variables that were identified could be clinically feasible targets for biofeedback to improve gait after ACLR.


2005 ◽  
Vol 95 (3) ◽  
pp. 247-253 ◽  
Author(s):  
Janelle K. Lymbery ◽  
Wendy Gilleard

The purpose of this study was to investigate temporospatial and ground reaction force variables in the stance phase of walking during late pregnancy. An eight-camera motion-analysis system was used to record 13 pregnant women at 38 weeks’ gestation and again 8 weeks after birth. In late pregnancy, there was a wider step width, and mediolateral ground reaction force tended to be increased in a medial direction. The center of pressure moved more medially initially and less anteriorly at 100% of stance in late pregnancy. The differences suggest that women may adapt their gait to maximize stability in the stance phase of walking and to control mediolateral motion. (J Am Podiatr Med Assoc 95(3): 247–253, 2005)


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ziyou Zhou ◽  
Can Wu ◽  
Zhen Hu ◽  
Yujuan Chai ◽  
Kai Chen ◽  
...  

AbstractIt has been known that short-time auditory stimulation can contribute to the improvement of the balancing ability of the human body. The present study aims to explore the effects of white Gaussian noise (WGN) of different intensities and frequencies on dynamic balance performance in healthy young adults. A total of 20 healthy young participants were asked to stand at a dynamic balance force platform, which swung along the x-axis with an amplitude of ± 4° and frequency of 1 Hz. Their center of pressure (COP) trajectories were recorded when they were stimulated by WGN of different intensities (block 1) and different frequencies (block 2). A traditional method and detrended fluctuation analysis (DFA) were used for data preprocessing. The authors found that only with 75–85 dB WGN, the COP parameters improved. WGN frequency did not affect the dynamic balance performance of all the participants. The DFA results indicated stimulation with 75 dB WGN enhanced the short-term index and reduced the crossover point. Stimulation with 500 Hz and 2500 Hz WGN significantly enhanced the short-term index. These results suggest that 75 dB WGN and 500 Hz and 2500 Hz WGN improved the participants’ dynamic balance performance. The results of this study indicate that a certain intensity of WGN is indispensable to achieve a remarkable improvement in dynamic balance. The DFA results suggest that WGN only affected the short-term persistence, indicating the potential of WGN being considered as an adjuvant therapy in low-speed rehabilitation training.


2014 ◽  
Vol 30 (2) ◽  
pp. 305-309 ◽  
Author(s):  
Philippe Terrier ◽  
Fabienne Reynard

Local dynamic stability (stability) quantifies how a system responds to small perturbations. Several experimental and clinical findings have highlighted the association between gait stability and fall risk. Walking without shoes is known to slightly modify gait parameters. Barefoot walking may cause unusual sensory feedback to individuals accustomed to shod walking, and this may affect stability. The objective was therefore to compare the stability of shod and barefoot walking in healthy individuals and to analyze the intrasession repeatability. Forty participants traversed a 70 m indoor corridor wearing normal shoes in one trial and walking barefoot in a second trial. Trunk accelerations were recorded with a 3D-accelerometer attached to the lower back. The stability was computed using the finite-time maximal Lyapunov exponent method. Absolute agreement between the forward and backward paths was estimated with the intraclass correlation coefficient (ICC). Barefoot walking did not significantly modify the stability as compared with shod walking (average standardized effect size: +0.11). The intrasession repeatability was high (ICC: 0.73–0.81) and slightly higher in barefoot walking condition (ICC: 0.81–0.87). Therefore, it seems that barefoot walking can be used to evaluate stability without introducing a bias as compared with shod walking, and with a sufficient reliability.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1343
Author(s):  
Sebastian Fudickar ◽  
Jörn Kiselev ◽  
Christian Stolle ◽  
Thomas Frenken ◽  
Elisabeth Steinhagen-Thiessen ◽  
...  

This article covers the suitability to measure gait-parameters via a Laser Range Scanner (LRS) that was placed below a chair during the walking phase of the Timed Up&Go Test in a cohort of 92 older adults (mean age 73.5). The results of our study demonstrated a high concordance of gait measurements using a LRS in comparison to the reference GAITRite walkway. Most of aTUG’s gait parameters demonstrate a strong correlation coefficient with the GAITRite, indicating high measurement accuracy for the spatial gait parameters. Measurements of velocity had a correlation coefficient of 99%, which can be interpreted as an excellent measurement accuracy. Cadence showed a slightly lower correlation coefficient of 96%, which is still an exceptionally good result, while step length demonstrated a correlation coefficient of 98% per leg and stride length with an accuracy of 99% per leg. In addition to confirming the technical validation of the aTUG regarding its ability to measure gait parameters, we compared results from the GAITRite and the aTUG for several parameters (cadence, velocity, and step length) with results from the Berg Balance Scale (BBS) and the Activities-Specific Balance Confidence-(ABC)-Scale assessments. With confidence coefficients for BBS and velocity, cadence and step length ranging from 0.595 to 0.798 and for ABC ranging from 0.395 to 0.541, both scales demonstrated only a medium-sized correlation. Thus, we found an association of better walking ability (represented by the measured gait parameters) with better balance (BBC) and balance confidence (ABC) overall scores via linear regression. This results from the fact that the BBS incorporates both static and dynamic balance measures and thus, only partly reflects functional requirements for walking. For the ABC score, this effect was even more pronounced. As this is to our best knowledge the first evaluation of the association between gait parameters and these balance scores, we will further investigate this phenomenon and aim to integrate further measures into the aTUG to achieve an increased sensitivity for balance ability.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Beth A. Smith ◽  
Masayoshi Kubo ◽  
Beverly D. Ulrich

The combined effects of ligamentous laxity, hypotonia, and decrements associated with aging lead to stability-enhancing foot placement adaptations during routine overground walking at a younger age in adults with Down syndrome (DS) compared to their peers with typical development (TD). Our purpose here was to examine real-time adaptations in older adults with DS by testing their responses to walking on a treadmill at their preferred speed and at speeds slower and faster than preferred. We found that older adults with DS were able to adapt their gait to slower and faster than preferred treadmill speeds; however, they maintained their stability-enhancing foot placements at all speeds compared to their peers with TD. All adults adapted their gait patterns similarly in response to faster and slower than preferred treadmill-walking speeds. They increased stride frequency and stride length, maintained step width, and decreased percent stance as treadmill speed increased. Older adults with DS, however, adjusted their stride frequencies significantly less than their peers with TD. Our results show that older adults with DS have the capacity to adapt their gait parameters in response to different walking speeds while also supporting the need for intervention to increase gait stability.


Sign in / Sign up

Export Citation Format

Share Document