scholarly journals Evaluation of gait symmetry in poliomyelitis subjects: Comparison of a conventional knee–ankle–foot orthosis and a new powered knee–ankle–foot orthosis

2016 ◽  
Vol 40 (6) ◽  
pp. 689-695 ◽  
Author(s):  
Mokhtar Arazpour ◽  
Fardin Ahmadi ◽  
Mahmood Bahramizadeh ◽  
Mohammad Samadian ◽  
Mohammad Ebrahim Mousavi ◽  
...  

Background:Compared to able-bodied subjects, subjects with post-polio syndrome and poliomyelitis demonstrate a preference for weight-bearing on the non-paretic limb, causing gait asymmetry.Objectives:The purpose of this study was to evaluate the gait symmetry of the poliomyelitis subjects when ambulating with either a drop-locked knee–ankle–foot orthosis or a newly developed powered knee–ankle–foot orthosis.Study design:Quasi experimental study.Methods:Seven subjects with poliomyelitis who routinely wore conventional knee–ankle–foot orthoses participated in this study and received training to enable them to ambulate with the powered knee–ankle–foot orthosis on level ground, prior to gait analysis.Results:There were no significant differences in the gait symmetry index of step length ( p = 0.085), stance time ( p = 0.082), double-limb support time ( p = 0.929), or speed of walking ( p = 0.325) between the two test conditions. However, using the new powered knee–ankle–foot orthosis improved the symmetry index in step width ( p = 0.037), swing time ( p = 0.014), stance phase percentage ( p = 0.008), and knee flexion during swing phase ( p ⩽ 0.001) compared to wearing the drop-locked knee–ankle–foot orthosis.Conclusion:The use of a powered knee–ankle–foot orthosis for ambulation by poliomyelitis subjects affects gait symmetry in the base of support, swing time, stance phase percentage, and knee flexion during swing phase.Clinical relevanceA new powered knee–ankle–foot orthosis can improve gait symmetry for poliomyelitis subjects by influencing step width, swing time, stance time percentage, and knee flexion during swing phase when compared to ambulating with a drop-locked knee–ankle–foot orthosis.

2015 ◽  
Vol 40 (3) ◽  
pp. 377-383 ◽  
Author(s):  
Mokhtar Arazpour ◽  
Alireza Moradi ◽  
Mohammad Samadian ◽  
Mahmood Bahramizadeh ◽  
Mahmoud Joghtaei ◽  
...  

Background:Traditionally, the anatomical knee joint is locked in extension when walking with a conventional knee–ankle–foot orthosis. A powered knee–ankle–foot orthosis was developed to provide restriction of knee flexion during stance phase and active flexion and extension of the knee during swing phase of gait.Objective:The purpose of this study was to determine differences of the powered knee–ankle–foot orthosis compared to a locked knee–ankle–foot orthosis in kinematic data and temporospatial parameters during ambulation.Study design:Quasi—experimental design.Methods:Subjects with poliomyelitis (n = 7) volunteered for this study and undertook gait analysis with both the powered and the conventional knee–ankle–foot orthoses. Three trials per orthosis were collected while each subject walked along a 6-m walkway using a calibrated six-camera three-dimensional video-based motion analysis system.Results:Walking with the powered knee–ankle–foot orthosis resulted in a significant reduction in both walking speed and step length (both 18%), but a significant increase in stance phase percentage compared to walking with the conventional knee–ankle–foot orthosis. Cadence was not significantly different between the two test conditions ( p = 0.751). There was significantly higher knee flexion during swing phase and increased hip hiking when using the powered orthosis.Conclusion:The new powered orthosis permitted improved knee joint kinematic for knee–ankle–foot orthosis users while providing knee support in stance and active knee motion in swing in the gait cycle. Therefore, the new powered orthosis provided more natural knee flexion during swing for orthosis users compared to the locked knee–ankle–foot orthosis.Clinical relevanceThis orthosis has the potential to improve knee joint kinematics and gait pattern in poliomyelitis subjects during walking activities.


2020 ◽  
Vol 81 ◽  
pp. 27-32 ◽  
Author(s):  
Yusuke Sekiguchi ◽  
Dai Owaki ◽  
Keita Honda ◽  
Kenichiro Fukushi ◽  
Noriyoshi Hiroi ◽  
...  

1998 ◽  
Vol 22 (3) ◽  
pp. 230-239 ◽  
Author(s):  
T. Suga ◽  
O. Kameyama ◽  
R. Ogawa ◽  
M. Matsuura ◽  
H. Oka

The authors have developed a knee-ankle-foot orthosis with a joint unit that controls knee movements using a microcomputer (Intelligent Orthosis). The Intelligent Orthosis was applied to normal subjects and patients, and gait analysis was performed. In the gait cycle, the ratio of the stance phase to the swing phase was less in gait with the knee locked using a knee-ankle-foot orthosis than in gait without an orthosis or gait with the knee controlled by a microcomputer. The ratio of the stance phase to the swing phase between controlled gait and normal gait was similar. For normal subjects the activity of the tibialis anterior was markedly increased from the heel-off phase to the swing phase in locked gait. The muscle activities of the lower limb were lower in controlled force in locked gait showed spikes immediately after heel-contact in the vertical at heel-contact in the sagittal to locked gait, gait with the Intelligent Orthosis is smooth and close to normal gait from the viewpoint of biomechanics. Even in patients with muscle weakness of the quadriceps, control of the knee joint using the Intelligent Orthosis resulted in a more smooth gait with low muscle discharge.


2017 ◽  
Vol 29 (4) ◽  
pp. 177-182
Author(s):  
Masoud Rafiaei ◽  
Mokhtar Arazpour ◽  
Mahmood Bahramizadeh ◽  
Farzam Farahmand ◽  
Nima Jamshidi ◽  
...  

1999 ◽  
Vol 23 (1) ◽  
pp. 75-81 ◽  
Author(s):  
B. McHugh

An ankle-foot orthosis (AFO) is employed principally to treat musculoskeletal disorders of the ankle and/or subtalar joints although, occasionally, it may be prescribed to provide stance phase control of the knee. In order to function satisfactorily, an AFO must apply appropriate forces to the lower leg in a manner which does not cause local tissue damage or discomfort. Equally the leg will apply forces to the AFO which it must be capable of withstanding without breakage or loss of function. Thus it is useful to know where the body-device interface forces act during walking and to be able to estimate their magnitudes. This is not well understood and has not been satisfactorily documented. This paper explains the force actions between the AFO and the leg, in the sagittal plane, where there is absence of muscle power. Furthermore, it explores the possibility of estimating the magnitudes of these forces. It is found that the forces are greatest when orthotic assistance is needed to compensate for plantar flexor insufficiency in late stance phase. On the other hand, where the AFO is used to support the foot, in the absence of dorsiflexion power in swing phase, the forces are relatively small. Understanding these force levels is relevant to the design of the AFO in terms of choice and use of materials and components.


Foot & Ankle ◽  
1984 ◽  
Vol 4 (4) ◽  
pp. 195-200 ◽  
Author(s):  
Robert K. Rosenthal

The molded polypropylene orthosis offers many advantages in the treatment of foot and ankle problems in cerebral palsy. Numerous balancing, stance phase, and swing phase difficulties are treated with an ankle-foot orthosis with appropriate molding to correct each specific problem. Various foot orthoses can also be used to control dynamic muscle imbalances. Gait analysis has confirmed the merits of these orthoses.


Author(s):  
Nadine Wismer ◽  
OA Alexander Krebs ◽  
Frank Braatz ◽  
Thomas Schmalz ◽  
Andreas Kranzl ◽  
...  

INTRODUCTION By enabling users to flex the orthotic leg during swing phase and safely lock it during stance phase, stance control orthosis (SCO) offers clear benefits compared to locked knee-ankle-foot-orthosis (KAFO)1. Since such orthoses do not offer dampened knee flexion in the weight-bearing condition, this represents a limitation in everyday activities such as ramp and stair descent. C-Brace, a microprocessor controlled stance and swing orthosis (SSCO), overcomes many of those problems. Maximum knee flexion angle in stance and swing phase during level walking are closer to physiological values with C-Brace compared to conventional KAFOs2. The patients are with C-Brace able to descend stairs and ramps reciprocally2. Furthermore, patients report of safer and easier ability to perform activities of daily living3. The main aim of next generation C-Brace is a reduction in size and an increase of adaptability to the patient’s anatomic structure. Due to technological changes, improvements especially for difficult ADLs (e.g. walking on uneven ground) are expected. Abstract PDF  Link: https://jps.library.utoronto.ca/index.php/cpoj/article/view/32020/24438 How to cite: Wismer N, Krebs A, Braatz F, Schmalz T, Kranzl A, Breuer C. PERFORMANCE, PATIENT BENEFITS AND ACCEPTANCE OF A NEW GENERATION OF MICROPROCESSOR-CONTROLLED STANCE AND SWING CONTROL ORTHOSIS. CANADIAN PROSTHETICS & ORTHOTICS JOURNAL, VOLUME 1, ISSUE 2, 2018; ABSTRACT, POSTER PRESENTATION AT THE AOPA’S 101ST NATIONAL ASSEMBLY, SEPT. 26-29, VANCOUVER, CANADA, 2018.DOI: https://doi.org/10.33137/cpoj.v1i2.32020 Abstracts were Peer-reviewed by the American Orthotic Prosthetic Association (AOPA) 101st National Assembly Scientific Committee.  http://www.aopanet.org/


2014 ◽  
Vol 30 (6) ◽  
pp. 728-731 ◽  
Author(s):  
Yvette L. Kerkum ◽  
Merel-Anne Brehm ◽  
Annemieke I. Buizer ◽  
Josien C. van den Noort ◽  
Jules G. Becher ◽  
...  

A rigid ventral shelf ankle foot orthosis (AFO) may improve gait in children with spastic cerebral palsy (SCP) whose gait is characterized by excessive knee flexion in stance. However, these AFOs can also impede ankle range of motion (ROM) and thereby inhibit push-off power. A more spring-like AFO can enhance push-off and may potentially reduce walking energy cost. The recent development of an adjustable spring-hinged AFO now allows adjustment of AFO stiffness, enabling tuning toward optimal gait performance. This study aims to quantify the mechanical properties of this spring-hinged AFO for each of its springs and settings. Using an AFO stiffness tester, two AFO hinges and their accompanying springs were measured. The springs showed a stiffness range of 0.01−1.82 N·m·deg−1. The moment-threshold increased with increasing stiffness (1.13–12.1 N·m), while ROM decreased (4.91–16.5°). Energy was returned by all springs (11.5–116.3 J). These results suggest that the two stiffest available springs should improve joint kinematics and enhance push-off in children with SCP walking with excessive knee flexion.


Author(s):  
Seobin Choi ◽  
Jieon Lee ◽  
Gwanseob Shin

Stiff-knee, which indicates reduced range of knee flexion, may decrease gait stability. Although it is closely related to an increase in fall risk, the effect of limited knee flexion on the balance capacity during walking has not been well studied. This study aimed at examining how walking with limited knee flexion would influence the center of pressure (COP) trajectory and spatiotemporal gait parameters. Sixteen healthy young participants conducted four different walking conditions: normal walking and walking with limited knee flexion of their left knee up to 40 and 20 degrees, respectively. Results show that the participants walked significantly (p<0.05) slower with shorter stride length, wider step width, less cadence, and decreased stance phase when walking with limited knee flexion, compared to normal walking. The increase in the asymmetry and variability of the COP was also observed. It indicates that limited knee flexion during walking might affect the dynamic balance.


2015 ◽  
Vol 40 (4) ◽  
pp. 454-459 ◽  
Author(s):  
Mokhtar Arazpour ◽  
Monireh Ahmadi Bani ◽  
Mohammad Samadian ◽  
Mohammad E Mousavi ◽  
Stephen W Hutchins ◽  
...  

Background: A powered knee–ankle–foot orthosis was developed to provide restriction of knee flexion during stance phase and active flexion and extension of the knee during swing phase of gait. Objective: The purpose of this study was to determine its effect on the physiological cost index, walking speed and the distance walked in people with poliomyelitis compared to when walking with a knee–ankle–foot orthosis with drop lock knee joints. Study design: Quasi experimental study. Methods: Seven subjects with poliomyelitis volunteered for the study and undertook gait analysis with both types of knee–ankle–foot orthosis. Results: Walking with the powered knee–ankle–foot orthosis significantly reduced walking speed ( p = 0.015) and the distance walked ( p = 0.004), and also, it did not improve physiological cost index values ( p = 0.009) compared to walking with the locked knee–ankle–foot orthosis. Conclusion: Using a powered knee–ankle–foot orthosis did not significantly improve any of the primary outcome measures during walking for poliomyelitis subjects. Clinical relevance This powered knee–ankle–foot orthosis design did not improve the physiological cost index of walking for people with poliomyelitis when compared to walking with a knee–ankle–foot orthosis with drop lock knee joints. This may have been due to the short training period used or the bulky design and additional weight of the powered orthosis. Further research is therefore warranted.


Sign in / Sign up

Export Citation Format

Share Document