What Cognitive Neurology Teaches Us about Our Experience of Color

2019 ◽  
Vol 26 (3) ◽  
pp. 252-265 ◽  
Author(s):  
Katarzyna Siuda-Krzywicka ◽  
Paolo Bartolomeo

Color provides valuable information about the environment, yet the exact mechanisms explaining how colors appear to us remain poorly understood. Retinal signals are processed in the visual cortex through high-level mechanisms that link color perception with top-down expectations and knowledge. Here, we review the neuroimaging evidence about color processing in the brain, and how it is affected by acquired brain lesions in humans. Evidence from patients with brain-damage suggests that high-level color processing may be divided into at least three modules: perceptual color experience, color naming, and color knowledge. These modules appear to be functionally independent but richly interconnected, and serve as cortical relays linking sensory and semantic information, with the final goal of directing object-related behavior. We argue that the relations between colors and their objects are key mechanisms to understand high-level color processing.

1996 ◽  
Vol 9 (2) ◽  
pp. 45-55 ◽  
Author(s):  
Hans J. Markowitsch ◽  
Pasquale Calabrese

Variables which are of influence in establishing clear predictions of neuropsychological alterations from neuroradiological data (and vice versa) are documented and discussed. It is concluded that personality factors and the kind and locus of brain lesions are the most crucial determinants. The locus of the brain damage may have cumulative effects either when it is situated in a strategic place (usually within the white matter, affecting interneuronal communication) or when various types of lesions appear superimposed (combination of focal and diffuse lesions). Consequently, the consideration of the patient's personality background and of as many neuropsychological facts as possible may considerably increase the validity of outcome predictions. When static or dynamic neuroimaging fails to show abnormalities in spite of obvious psychological alterations, an intensive neuropsychological documentation may even replace neuroradiology.


2009 ◽  
Vol 30 (3) ◽  
pp. 603-615 ◽  
Author(s):  
Anna Smirkin ◽  
Hiroaki Matsumoto ◽  
Hisaaki Takahashi ◽  
Akihiro Inoue ◽  
Masahiko Tagawa ◽  
...  

In a transient 90-min middle cerebral artery occlusion (MCAO) model of rats, a large ischemic lesion is formed where macrophage-like cells massively accumulate, many of which express a macrophage marker, Iba1, and an oligodendrocyte progenitor cell marker, NG2 chondroitin sulfate proteoglycan (NG2); therefore, the cells were termed BINCs (Brain Iba1+/NG2+Cells). A bone marrow transplantation experiment using green-fluorescent protein-transgenic rats showed that BINCs were derived from bone marrow. 5-Fluorouracil (5FU) injection at 2 days post reperfusion (2 dpr) markedly reduced the number of BINCs at 7 dpr, causing enlargement of necrotic volumes and frequent death of the rats. When isolated BINCs were transplanted into 5FU-aggravated ischemic lesion, the volume of the lesion was much reduced. Quantitative real-time RT-PCR showed that BINCs expressed mRNAs encoding bFGF, BMP2, BMP4, BMP7, GDNF, HGF, IGF-1, PDGF-A, and VEGF. In particular, BINCs expressed IGF-1 mRNA at a very high level. Immunohistochemical staining showed that IGF-1-expressing BINCs were found not only in rat but also human ischemic brain lesions. These results suggest that bone marrow-derived BINCs play a beneficial role in ischemic brain lesions, at least in part, through secretion of neuroprotective factors.


2021 ◽  
Vol 14 ◽  
Author(s):  
Huijun Pan ◽  
Shen Zhang ◽  
Deng Pan ◽  
Zheng Ye ◽  
Hao Yu ◽  
...  

Previous studies indicate that top-down influence plays a critical role in visual information processing and perceptual detection. However, the substrate that carries top-down influence remains poorly understood. Using a combined technique of retrograde neuronal tracing and immunofluorescent double labeling, we characterized the distribution and cell type of feedback neurons in cat’s high-level visual cortical areas that send direct connections to the primary visual cortex (V1: area 17). Our results showed: (1) the high-level visual cortex of area 21a at the ventral stream and PMLS area at the dorsal stream have a similar proportion of feedback neurons back projecting to the V1 area, (2) the distribution of feedback neurons in the higher-order visual area 21a and PMLS was significantly denser than in the intermediate visual cortex of area 19 and 18, (3) feedback neurons in all observed high-level visual cortex were found in layer II–III, IV, V, and VI, with a higher proportion in layer II–III, V, and VI than in layer IV, and (4) most feedback neurons were CaMKII-positive excitatory neurons, and few of them were identified as inhibitory GABAergic neurons. These results may argue against the segregation of ventral and dorsal streams during visual information processing, and support “reverse hierarchy theory” or interactive model proposing that recurrent connections between V1 and higher-order visual areas constitute the functional circuits that mediate visual perception. Also, the corticocortical feedback neurons from high-level visual cortical areas to the V1 area are mostly excitatory in nature.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
David GT Barrett ◽  
Sophie Denève ◽  
Christian K Machens

The brain has an impressive ability to withstand neural damage. Diseases that kill neurons can go unnoticed for years, and incomplete brain lesions or silencing of neurons often fail to produce any behavioral effect. How does the brain compensate for such damage, and what are the limits of this compensation? We propose that neural circuits instantly compensate for neuron loss, thereby preserving their function as much as possible. We show that this compensation can explain changes in tuning curves induced by neuron silencing across a variety of systems, including the primary visual cortex. We find that compensatory mechanisms can be implemented through the dynamics of networks with a tight balance of excitation and inhibition, without requiring synaptic plasticity. The limits of this compensatory mechanism are reached when excitation and inhibition become unbalanced, thereby demarcating a recovery boundary, where signal representation fails and where diseases may become symptomatic.


2021 ◽  
Vol 15 ◽  
Author(s):  
Max Garagnani ◽  
Evgeniya Kirilina ◽  
Friedemann Pulvermüller

Embodied theories of grounded semantics postulate that, when word meaning is first acquired, a link is established between symbol (word form) and corresponding semantic information present in modality-specific—including primary—sensorimotor cortices of the brain. Direct experimental evidence documenting the emergence of such a link (i.e., showing that presentation of a previously unknown, meaningless word sound induces, after learning, category-specific reactivation of relevant primary sensory or motor brain areas), however, is still missing. Here, we present new neuroimaging results that provide such evidence. We taught participants aspects of the referential meaning of previously unknown, senseless novel spoken words (such as “Shruba” or “Flipe”) by associating them with either a familiar action or a familiar object. After training, we used functional magnetic resonance imaging to analyze the participants’ brain responses to the new speech items. We found that hearing the newly learnt object-related word sounds selectively triggered activity in the primary visual cortex, as well as secondary and higher visual areas.These results for the first time directly document the formation of a link between the novel, previously meaningless spoken items and corresponding semantic information in primary sensory areas in a category-specific manner, providing experimental support for perceptual accounts of word-meaning acquisition in the brain.


2017 ◽  
Author(s):  
Michael F. Bonner ◽  
Russell A. Epstein

ABSTRACTBiologically inspired deep convolutional neural networks (CNNs), trained for computer vision tasks, have been found to predict cortical responses with remarkable accuracy. However, the complex internal operations of these models remain poorly understood, and the factors that account for their success are unknown. Here we developed a set of techniques for using CNNs to gain insights into the computational mechanisms underlying cortical responses. We focused on responses in the occipital place area (OPA), a scene-selective region of dorsal occipitoparietal cortex. In a previous study, we showed that fMRI activation patterns in the OPA contain information about the navigational affordances of scenes: that is, information about where one can and cannot move within the immediate environment. We hypothesized that this affordance information could be extracted using a set of purely feedforward computations. To test this idea, we examined a deep CNN with a feedforward architecture that had been previously trained for scene classification. We found that the CNN was highly predictive of OPA representations, and, importantly, that it accounted for the portion of OPA variance that reflected the navigational affordances of scenes. The CNN could thus serve as an image-computable candidate model of affordance-related responses in the OPA. We then ran a series of in silico experiments on this model to gain insights into its internal computations. These analyses showed that the computation of affordance-related features relied heavily on visual information at high-spatial frequencies and cardinal orientations, both of which have previously been identified as low-level stimulus preferences of scene-selective visual cortex. These computations also exhibited a strong preference for information in the lower visual field, which is consistent with known retinotopic biases in the OPA. Visualizations of feature selectivity within the CNN suggested that affordance-based responses encoded features that define the layout of the spatial environment, such as boundary-defining junctions and large extended surfaces. Together, these results map the sensory functions of the OPA onto a fully quantitative model that provides insights into its visual computations. More broadly, they advance integrative techniques for understanding visual cortex across multiple level of analysis: from the identification of cortical sensory functions to the modeling of their underlying algorithmic implementations.AUTHOR SUMMARYHow does visual cortex compute behaviorally relevant properties of the local environment from sensory inputs? For decades, computational models have been able to explain only the earliest stages of biological vision, but recent advances in the engineering of deep neural networks have yielded a breakthrough in the modeling of high-level visual cortex. However, these models are not explicitly designed for testing neurobiological theories, and, like the brain itself, their complex internal operations remain poorly understood. Here we examined a deep neural network for insights into the cortical representation of the navigational affordances of visual scenes. In doing so, we developed a set of high-throughput techniques and statistical tools that are broadly useful for relating the internal operations of neural networks with the information processes of the brain. Our findings demonstrate that a deep neural network with purely feedforward computations can account for the processing of navigational layout in high-level visual cortex. We next performed a series of experiments and visualization analyses on this neural network, which characterized a set of stimulus input features that may be critical for computing navigationally related cortical representations and identified a set of high-level, complex scene features that may serve as a basis set for the cortical coding of navigational layout. These findings suggest a computational mechanism through which high-level visual cortex might encode the spatial structure of the local navigational environment, and they demonstrate an experimental approach for leveraging the power of deep neural networks to understand the visual computations of the brain.


2020 ◽  
Author(s):  
Daniel Kaiser ◽  
Greta Häberle ◽  
Radoslaw M. Cichy

AbstractLooking for objects within complex natural environments is a task everybody performs multiple times each day. In this study, we explore how the brain uses the typical composition of real-world environments to efficiently solve this task. We recorded fMRI activity while participants performed two different categorization tasks on natural scenes. In the object task, they indicated whether the scene contained a person or a car, while in the scene task, they indicated whether the scene depicted an urban or a rural environment. Critically, each scene was presented in an “intact” way, preserving its coherent structure, or in a “jumbled” way, with information swapped across quadrants. In both tasks, participants’ categorization was more accurate and faster for intact scenes. These behavioral benefits were accompanied by stronger responses to intact than to jumbled scenes across high-level visual cortex. To track the amount of object information in visual cortex, we correlated multivoxel response patterns during the two categorization tasks with response patterns evoked by people and cars in isolation. We found that object information in object- and body-selective cortex was enhanced when the object was embedded in an intact, rather than a jumbled scene. However, this enhancement was only found in the object task: When participants instead categorized the scenes, object information did not differ between intact and jumbled scenes. Together, these results indicate that coherent scene structure facilitates the extraction of object information in a task-dependent way, suggesting that interactions between the object and scene processing pathways adaptively support behavioral goals.


2012 ◽  
Vol 24 (6) ◽  
pp. 1275-1285 ◽  
Author(s):  
Caterina Gratton ◽  
Emi M. Nomura ◽  
Fernando Pérez ◽  
Mark D'Esposito

Although it is generally assumed that brain damage predominantly affects only the function of the damaged region, here we show that focal damage to critical locations causes disruption of network organization throughout the brain. Using resting state fMRI, we assessed whole-brain network structure in patients with focal brain lesions. Only damage to those brain regions important for communication between subnetworks (e.g., “connectors”)—but not to those brain regions important for communication within sub-networks (e.g., “hubs”)—led to decreases in modularity, a measure of the integrity of network organization. Critically, this network dysfunction extended into the structurally intact hemisphere. Thus, focal brain damage can have a widespread, nonlocal impact on brain network organization when there is damage to regions important for the communication between networks. These findings fundamentally revise our understanding of the remote effects of focal brain damage and may explain numerous puzzling cases of functional deficits that are observed following brain injury.


2015 ◽  
Author(s):  
David Barrett ◽  
Sophie Deneve ◽  
Christian Machens

The brain has an impressive ability to withstand neural damage. Diseases that kill neurons can go unnoticed for years, and incomplete brain lesions or silencing of neurons often fail to produce any effect. How does the brain compensate for such damage, and what are the limits of this compensation? We propose that neural circuits optimally compensate for neuron death, thereby preserving their function as much as possible. We show that this compensation can explain changes in tuning curves induced by neuron silencing across a variety of systems, including the primary visual cortex. We find that optimal compensation can be implemented through the dynamics of networks with a tight balance of excitation and inhibition, without requiring synaptic plasticity. The limits of this compensatory mechanism are reached when excitation and inhibition become unbalanced, thereby demarcating a recovery boundary, where signal representation fails and where diseases may become symptomatic.


Sign in / Sign up

Export Citation Format

Share Document