scholarly journals Murine Monoclonal Antibody to Platelet Factor 4/Heparin Complexes as a Potential Reference Standard for Platelet Activation Assays in Heparin-Induced Thrombocytopenia

2012 ◽  
Vol 19 (1) ◽  
pp. 37-41 ◽  
Author(s):  
Reiko Asada ◽  
Keiko Wanaka ◽  
Jeanine Walenga ◽  
Margaret Prechel ◽  
Kumiko Miyashita ◽  
...  
2021 ◽  
Author(s):  
Andreas Greinacher ◽  
Kathleen Selleng ◽  
Julia Mayerle ◽  
Raghavendra Palankar ◽  
Jan Wesche ◽  
...  

Abstract Background: Some recipients of ChAdOx1 nCoV-19 COVID-19 Vaccine AstraZeneca develop antibody-mediated vaccine-induced thrombotic thrombocytopenia (VITT), associated with cerebral venous and other unusual thrombosis resembling autoimmune heparin-induced thrombocytopenia. A prothrombotic predisposition is also observed in Covid-19. We explored whether antibodies against the SARS-CoV-2 spike protein induced by Covid-19 cross-react with platelet factor 4 (PF4/CXLC4), the protein targeted in both VITT and autoimmune heparin-induced thrombocytopenia.Methods: Immunogenic epitopes of PF4 and SARS-CoV-2 spike protein were compared via prediction tools and 3D modelling software (IMED, SIM, MacMYPOL). Sera from 222 PCR-confirmed Covid-19 patients from five European centers were tested by PF4/heparin ELISA, heparin-dependent and PF4-dependent platelet activation assays. Immunogenic reactivity of purified anti-PF4 and anti-PF4/heparin antibodies from patients with VITT were tested against recombinant SARS-CoV-2 spike protein. Results: Three motifs within the spike protein sequence share a potential immunogenic epitope with PF4. Nineteen of 222 (8.6%) Covid-19 patient sera tested positive in the IgG-specific PF4/heparin ELISA, none of which showed platelet activation in the heparin-dependent activation assay, including 10 (4.5%) of the 222 Covid-19 patients who developed thromboembolic complications. Purified anti-PF4 and anti-PF4/heparin antibodies from two VITT patients did not show cross-reactivity to recombinant SARS-CoV-2 spike protein. Conclusions: The antibody responses to PF4 in SARS-CoV-2 infection and after vaccination with COVID-19 Vaccine AstraZeneca differ. Antibodies against SARS-CoV-2 spike protein do not cross-react with PF4 or PF4/heparin complexes through molecular mimicry. These findings make it very unlikely that the intended vaccine-induced immune response against SARS-CoV-2 spike protein would itself induce VITT.


Blood ◽  
2012 ◽  
Vol 119 (5) ◽  
pp. 1248-1255 ◽  
Author(s):  
Krystin Krauel ◽  
Christine Hackbarth ◽  
Birgitt Fürll ◽  
Andreas Greinacher

Abstract Heparin is a widely used anticoagulant. Because of its negative charge, it forms complexes with positively charged platelet factor 4 (PF4). This can induce anti-PF4/heparin IgG Abs. Resulting immune complexes activate platelets, leading to the prothrombotic adverse drug reaction heparin-induced thrombocytopenia (HIT). HIT requires treatment with alternative anticoagulants. Approved for HIT are 2 direct thrombin inhibitors (DTI; lepirudin, argatroban) and danaparoid. They are niche products with limitations. We assessed the effects of the DTI dabigatran, the direct factor Xa-inhibitor rivaroxaban, and of 2-O, 3-O desulfated heparin (ODSH; a partially desulfated heparin with minimal anticoagulant effects) on PF4/heparin complexes and the interaction of anti-PF4/heparin Abs with platelets. Neither dabigatran nor rivaroxaban had any effect on the interaction of PF4 or anti-PF4/heparin Abs with platelets. In contrast, ODSH inhibited PF4 binding to gel-filtered platelets, displaced PF4 from a PF4-transfected cell line, displaced PF4/heparin complexes from platelet surfaces, and inhibited anti-PF4/heparin Ab binding to PF4/heparin complexes and subsequent platelet activation. Dabigatran and rivaroxaban seem to be options for alternative anticoagulation in patients with a history of HIT. ODSH prevents formation of immunogenic PF4/heparin complexes, and, when given together with heparin, may have the potential to reduce the risk for HIT during treatment with heparin.


2000 ◽  
Vol 124 (11) ◽  
pp. 1657-1666 ◽  
Author(s):  
Fabrizio Fabris ◽  
Sarfraz Ahmad ◽  
Giuseppe Cella ◽  
Walter P. Jeske ◽  
Jeanine M. Walenga ◽  
...  

Abstract Objective.—This review of heparin-induced thrombocytopenia (HIT), the most frequent and dangerous side effect of heparin exposure, covers the epidemiology, pathophysiology, clinical presentation, diagnosis, and treatment of this disease syndrome. Data Sources and Study Selection.—Current consensus of opinion is given based on literature reports, as well as new information where available. A comprehensive analysis of the reasons for discrepancies in incidence numbers is given. The currently known mechanism is that HIT is mediated by an antibody to the complex of heparin–platelet factor 4, which binds to the Fc receptor on platelets. New evidence suggests a functional heterogeneity in the anti-heparin-platelet factor 4 antibodies generated to heparin, and a “superactive” heparin-platelet factor 4 antibody that does not require the presence of heparin to promote platelet activation or aggregation has been identified. Up-regulation of cell adhesion molecules and inflammatory markers, as well as preactivation of platelets/endothelial cells/leukocytes, are also considered to be related to the pathophysiology of HIT. Issues related to the specificity of currently available and new laboratory assays that support a clinical diagnosis are addressed in relation to the serotonin-release assay. Past experience with various anticoagulant treatments is reviewed with a focus on the recent successes of thrombin inhibitors and platelet GPIIb/IIIa inhibitors to combat the platelet activation and severe thrombotic episodes associated with HIT. Conclusions.—The pathophysiology of HIT is multifactorial. However, the primary factor in the mediation of the cellular activation is due to the generation of an antibody to the heparin-platelet factor 4 complex. This review is written as a reference for HIT research.


2020 ◽  
Vol 21 (7) ◽  
pp. 2556
Author(s):  
Elmira R. Mordakhanova ◽  
Tatiana A. Nevzorova ◽  
Gulnaz E. Synbulatova ◽  
Lubica Rauova ◽  
John W. Weisel ◽  
...  

Heparin-induced thrombocytopenia (HIT) is an adverse drug reaction characterized by thrombocytopenia and a high risk for venous or arterial thrombosis. HIT is caused by antibodies that recognize complexes of platelet factor 4 and heparin. The pathogenic mechanisms of this condition are not fully understood. In this study, we used flow cytometry, fluorimetry, and Western blot analysis to study the direct effects of pathogenic immune complexes containing platelet factor 4 on human platelets isolated by gel-filtration. HIT-like pathogenic immune complexes initially caused pronounced activation of platelets detected by an increased expression of phosphatidylserine and P-selectin. This activation was mediated either directly through the FcγRIIA receptors or indirectly via protease-activated receptor 1 (PAR1) receptors due to thrombin generated on or near the surface of activated platelets. The immune activation was later followed by the biochemical signs of cell death, such as mitochondrial membrane depolarization, up-regulation of Bax, down-regulation of Bcl-XL, and moderate activation of procaspase 3 and increased calpain activity. The results show that platelet activation under the action of HIT-like immune complexes is accompanied by their death through complex apoptotic and calpain-dependent non-apoptotic pathways that may underlie the low platelet count in HIT.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2105-2105
Author(s):  
Josephine Cunanan ◽  
Michelle Kujawski ◽  
He Zhu ◽  
Margaret Prechel ◽  
Jeanine Walenga ◽  
...  

Abstract Heparin-induced thrombocytopenia (HIT) is one of the most catastrophic adverse effects of heparin therapy, representing a complex syndrome involving immunopathologic and hemostatic disorders. Vascular and blood cellular damage results in the generation of microparticles (MP). These MP are formed from stress conditions/cellular disruption and apoptosis. Cellular MP mediated pathophysiologic responses include platelet activation, up regulation of adhesion molecules, monocyte activation, up regulation of tissue factor and endothelial dysfunction. Several methods based on flow cytometric and other immunologic probes have been used to measure MP in the HIT syndrome. Recently, a functional method based on the complexation of MP with annexin V promoting the generation of factor Xa and thrombin has become available (Hyphen Biomedical, Neuville-Oise, France). To validate the hypothesis that functional MP are elevated in the HIT syndrome, this method was utilized for the quantitation of MP in sera ELISA positive for anti-heparin/platelet factor 4 (HIT) antibodies. Specimens (n = 53) were selected from archived samples that had been referred to Loyola University Medical Center for the laboratory diagnosis of HIT by quantitating anti-heparin/PF4 antibodies by ELISA and by evaluating HIT antibody induced platelet activation using the 14C Serotonin Release Assay (SRA). All selected specimens were positive for HIT antibodies in the GTI PF4 Enhanced ELISA with a broad range of antibody titers (absorbance range of 0.4 – 2.5). Eleven of these specimens were positive in the SRA. In addition, serial samples from HIT patients treated with argatroban (from the ARG-911 clinical study) were included (n = 23). The normal samples represented control sera obtained from healthy human volunteers (n = 25) and processed in the same manner as the clinical samples. Test samples were added to microtiter plates coated with streptavidin and biotinylated annexin V. MP present in the test sample bound to annexin V via exposed surface phospholipids. Following incubation and washing steps, a FXa – FVa mixture containing calcium and prothrombin was added. The assay was optimized so that MP associated phospholipid was the limiting factor for the generation of thrombin. In normal non-HIT sera, the MP levels ranged 5.6 – 10.1 nM (6.1 ± 2.8 nM). The pre-treatment, baseline levels of circulating MP in the suspected HIT patients ranged from 4.2 – 26.8 nM (15.8 ± 7.3 nM). Interestingly, SRA positive/ELISA positive samples had relatively higher levels of MP (19.9 ± 7.7 nM; range 11.5 – 29.8 nM) than SRA negative/ELISA positive samples (14.2± 4.6; range 6.8–21.2). In the ARG-911 study, sequential blood samples exhibited MP levels at the baseline ranging from 8.2 – 38.6 nM (21.8 ± 10.8 nM), whereas after 3 days of argatroban treatment were reduced to 5.1 – 19.2 nM (12.6 ± 6.3). The results of these studies suggest that circulating functional MP are increased in patients with ELISA positive HIT antibodies. Anticoagulation with such direct thrombin agents as argatroban effectively decreases the circulating functional MP levels. Since the elevated MP levels may mediate thrombin and FXa generation, the therapeutic effects of these drugs in HIT may be related to the decreased activation of coagulation and related thrombogenic processes.


Blood ◽  
2011 ◽  
Vol 117 (4) ◽  
pp. 1370-1378 ◽  
Author(s):  
Krystin Krauel ◽  
Christian Pötschke ◽  
Claudia Weber ◽  
Wolfram Kessler ◽  
Birgitt Fürll ◽  
...  

AbstractA clinically important adverse drug reaction, heparin-induced thrombocytopenia (HIT), is induced by antibodies specific for complexes of the chemokine platelet factor 4 (PF4) and the polyanion heparin. Even heparin-naive patients can generate anti-PF4/heparin IgG as early as day 4 of heparin treatment, suggesting preimmunization by antigens mimicking PF4/heparin complexes. These antibodies probably result from bacterial infections, as (1) PF4 bound charge-dependently to various bacteria, (2) human heparin-induced anti-PF4/heparin antibodies cross-reacted with PF4-coated Staphylococcus aureus and Escherichia coli, and (3) mice developed anti-PF4/heparin antibodies during polymicrobial sepsis without heparin application. Thus, after binding to bacteria, the endogenous protein PF4 induces antibodies with specificity for PF4/polyanion complexes. These can target a large variety of PF4-coated bacteria and enhance bacterial phagocytosis in vitro. The same antigenic epitopes are expressed when pharmacologic heparin binds to platelets augmenting formation of PF4 complexes. Boosting of preformed B cells by PF4/heparin complexes could explain the early occurrence of IgG antibodies in HIT. We also found a continuous, rather than dichotomous, distribution of anti-PF4/heparin IgM and IgG serum concentrations in a cross-sectional population study (n = 4029), indicating frequent preimmunization to modified PF4. PF4 may have a role in bacterial defense, and HIT is probably a misdirected antibacterial host defense mechanism.


1995 ◽  
Vol 73 (01) ◽  
pp. 021-028 ◽  
Author(s):  
J Amiral ◽  
F Bridey ◽  
M Wolf ◽  
C Boyer-Neumann ◽  
E Fressinaud ◽  
...  

SummaryAs heparin-PF4 (H-PF4) complexes are the target for antibodies associated to heparin-induced thrombocytopenia (HIT), an ELISA has been developed and optimised for testing antibodies binding to H-PF4. This test was consistently negative in 50 healthy subjects (A492 <0.3) and 35 patients with other causes of thrombocytopenia (A492 <0.5). In contrast, 43 out of 44 HIT patients showed antibodies to H-PF4 (A492 = 1.70 ± 0.81) including 5 patients with a negative platelet aggregation test. In one patient with HIT, antibodies to H-PF4 were already present at day 7, whereas platelet counts dropped ≤ 100 × 109/l only at days 11–12. Surprisingly, among 41 patients under heparin for >7 days, 5 showed antibodies to H-PF4, without HIT. These findings underline the major interest of this ELISA for the early diagnosis of HIT. We also showed that LMWH as well as other sulphated polysaccharides can bind to HIT antibodies in the presence of PF4 and that their reactivity is dependent on the molecular weight and the sulphation grade. The mechanism for HIT involves platelet PF4 receptors which bind the macromolecular H-PF4 complexes formed in the presence of a well defined heparin/PF4 ratio.


Blood ◽  
2012 ◽  
Vol 120 (16) ◽  
pp. 3345-3352 ◽  
Author(s):  
Krystin Krauel ◽  
Claudia Weber ◽  
Sven Brandt ◽  
Ulrich Zähringer ◽  
Uwe Mamat ◽  
...  

AbstractThe positively charged chemokine platelet factor 4 (PF4) forms immunogenic complexes with heparin and other polyanions. Resulting antibodies can induce the adverse drug effect heparin-induced thrombocytopenia. PF4 also binds to bacteria, thereby exposing the same neoantigen(s) as with heparin. In this study, we identified the negatively charged lipopolysaccharide (LPS) as the PF4 binding structure on Gram-negative bacteria. We demonstrate by flow cytometry that mutant bacteria with progressively truncated LPS structures show increasingly enhanced PF4 binding activity. PF4 bound strongest to mutants lacking the O-antigen and core structure of LPS, but still exposing lipid A on their surfaces. Strikingly, PF4 bound more efficiently to bisphosphorylated lipid A than to monophosphorylated lipid A, suggesting that phosphate residues of lipid A mediate PF4 binding. Interactions of PF4 with Gram-negative bacteria, where only the lipid A part of LPS is exposed, induce epitopes on PF4 resembling those on PF4/heparin complexes as shown by binding of human anti-PF4/heparin antibodies. As both the lipid A on the surface of Gram-negative bacteria and the amino acids of PF4 contributing to polyanion binding are highly conserved, our results further support the hypothesis that neoepitope formation on PF4 after binding to bacteria is an ancient host defense mechanism.


Sign in / Sign up

Export Citation Format

Share Document