Investigations on the band-gap characteristics of one-dimensional flexural periodic structures with varying geometries

2021 ◽  
pp. 107754632110368
Author(s):  
Sachchidanand Das ◽  
Murtaza Bohra ◽  
Sabareesh Geetha Rajasekharan ◽  
Yendluri Venkata Daseswara Rao

Periodic structures have been studied extensively for their wave-filtering capabilities as they exhibit frequency band-gaps. The band-gap characteristics of flexural periodic structures, consisting of periodic cavities, depend on the geometry (shape and size) of cavities. The present work brings out experimental and numerical investigation of the effect of geometry of periodicity on the vibration characteristics of one-dimensional periodic structures. A procedure for prediction of the experimentally observed frequency band-gaps, with the help of eigenfrequency analysis, has been presented. Further, a novel concept of ‘real’ and ‘pseudo’ band-gaps has been theorized. Based on the experimental and numerical results, the best configuration of a periodic structure for maximum vibration attenuation has been arrived at. The work can find application in the design of frames and channels, made of periodic structures, where periodicity can be introduced to reduce vibration transmission in desired frequency bands. It can also reduce the requirement of extensive prototype trials for the selection of suitable periodic geometry.

2017 ◽  
Vol 66 (6) ◽  
pp. 064301
Author(s):  
Jiang Jiu-Long ◽  
Yao Hong ◽  
Du Jun ◽  
Zhao Jing-Bo ◽  
Deng Tao

Author(s):  
Dawei Zhu ◽  
Xiuchang Huang ◽  
Hongxing Hua ◽  
Hui Zheng

Owing to their locally resonant mechanism, internal resonators are usually used to provide band gaps in low-frequency region for many types of periodic structures. In this study, internal resonators are used to improve the vibration attenuation ability of finite periodic tetra-chiral coating, enabling high reduction of the radiated sound power by a vibrating stiffened plate. Based on the Bloch theorem and finite element method, the band gap characteristics of tetra-chiral unit cells filled with and without internal resonators are analysed and compared to reveal the relationship between band gaps and vibration modes of such tetra-chiral unit cells. The rotational vibration of internal resonators can effectively strengthen the vibration attenuation ability of tetra-chiral lattice and extend the effective frequency range of vibration attenuation. Two tetra-chiral lattices with and without internal resonators are respectively designed and their vibration transmissibilities are measured using the hammering method. The experimental results confirm the vibration isolation effect of the internal resonators on the finite periodic tetra-chiral lattice. The tetra-chiral lattice as an acoustic coating is applied to a stiffened plate, and analysis results indicate that the internal resonators can obviously enhance the vibration attenuation ability of tetra-chiral lattice coating in the frequency range of the band gap corresponding to the rotating vibration mode of internal resonators. When the soft rubber with the internal resonators in tetra-chiral layers has gradient elastic modulus, the vibration attenuation ability and noise reduction of the tetra-chiral lattice coating are basically enhanced in the frequency range of the corresponding band gaps of tetra-chiral unit cells.


2010 ◽  
Vol 663-665 ◽  
pp. 725-728 ◽  
Author(s):  
Yuan Ming Huang ◽  
Qing Lan Ma ◽  
Bao Gai Zhai ◽  
Yun Gao Cai

Considered the model of the one-dimensional photonic crystals (1-D PCs) with double defects, the refractive indexes (n2’, n3’ and n2’’, n3’’) of the double defects were 2.0, 4.0 and 4.0, 2.0 respectively. With parameter n2=1.5, n3=2.5, by theoretical calculations with characteristic matrix method, the results shown that for a certain number (14 was taken) of layers of the 1-D PCs, when the double defects abutted, there was a defect band gap in the stop band gap, while when the double defects separated, there occurred two defect band gaps in the stop band gap; besides, with the separation of the two defects, the transmittance of the double defect band gaps decreased gradually. In addition, in this progress, the frequency range of the stop band gap has a little increase from 0.092 to 0.095.


2013 ◽  
Vol 114 (3) ◽  
pp. 033532 ◽  
Author(s):  
Zhibao Cheng ◽  
Zhifei Shi ◽  
Y. L. Mo ◽  
Hongjun Xiang

2020 ◽  
Vol 14 (5) ◽  
Author(s):  
Zheng-wei Li ◽  
Xin-sheng Fang ◽  
Bin Liang ◽  
Yong Li ◽  
Jian-chun Cheng

Author(s):  
Shashidhar Patil ◽  
Liang-Wu Cai

Large-scale deterministic simulations are performed in order to observe the band gap formation in composite models having quasi-random fiber arrangements. Composite plates are modeled in two-dimensions with various unidirectional fiber arrangements. The quasi-random fiber arrangements can be qualified as essentially regular with slight randomness. Simulation results are compared with the corresponding case of ideally regular fiber arrangement. The most interesting observation is that the slight randomness in the fiber arrangements enhances the band gap phenomenon by introducing a few secondary band gaps adjacent to the primary band gap. An attempt is made to relate the band gap characteristics to the statistical parameters of fiber arrangements.


Sign in / Sign up

Export Citation Format

Share Document