Band gap mechanism and vibration attenuation characteristics of the quasi-one-dimensional tetra-chiral metamaterial

Author(s):  
Yingli Li ◽  
Hanqing Zhang
2021 ◽  
pp. 107754632110368
Author(s):  
Sachchidanand Das ◽  
Murtaza Bohra ◽  
Sabareesh Geetha Rajasekharan ◽  
Yendluri Venkata Daseswara Rao

Periodic structures have been studied extensively for their wave-filtering capabilities as they exhibit frequency band-gaps. The band-gap characteristics of flexural periodic structures, consisting of periodic cavities, depend on the geometry (shape and size) of cavities. The present work brings out experimental and numerical investigation of the effect of geometry of periodicity on the vibration characteristics of one-dimensional periodic structures. A procedure for prediction of the experimentally observed frequency band-gaps, with the help of eigenfrequency analysis, has been presented. Further, a novel concept of ‘real’ and ‘pseudo’ band-gaps has been theorized. Based on the experimental and numerical results, the best configuration of a periodic structure for maximum vibration attenuation has been arrived at. The work can find application in the design of frames and channels, made of periodic structures, where periodicity can be introduced to reduce vibration transmission in desired frequency bands. It can also reduce the requirement of extensive prototype trials for the selection of suitable periodic geometry.


2010 ◽  
Vol 663-665 ◽  
pp. 725-728 ◽  
Author(s):  
Yuan Ming Huang ◽  
Qing Lan Ma ◽  
Bao Gai Zhai ◽  
Yun Gao Cai

Considered the model of the one-dimensional photonic crystals (1-D PCs) with double defects, the refractive indexes (n2’, n3’ and n2’’, n3’’) of the double defects were 2.0, 4.0 and 4.0, 2.0 respectively. With parameter n2=1.5, n3=2.5, by theoretical calculations with characteristic matrix method, the results shown that for a certain number (14 was taken) of layers of the 1-D PCs, when the double defects abutted, there was a defect band gap in the stop band gap, while when the double defects separated, there occurred two defect band gaps in the stop band gap; besides, with the separation of the two defects, the transmittance of the double defect band gaps decreased gradually. In addition, in this progress, the frequency range of the stop band gap has a little increase from 0.092 to 0.095.


2016 ◽  
Vol 599 ◽  
pp. 138-144 ◽  
Author(s):  
S. Jena ◽  
R.B. Tokas ◽  
P. Sarkar ◽  
J.S. Misal ◽  
S. Maidul Haque ◽  
...  

2021 ◽  
Author(s):  
Hong-Mei Peng ◽  
Bao-Fei Wan ◽  
Peng-Xiang Wang ◽  
Dan Zhang ◽  
Hai-Feng Zhang

Abstract In this paper, the characteristics of the omnidirectional band gap (OBG) for one-dimensional (1D) plasma cylindrical photonic crystals (PCPCs) are based on an improved Fibonacci topological (IFT) structure are studied. The influences of the azimuthal mode number, incident angle, plasma thickness, and plasma frequency on the OBG are discussed. It is concluded that increasing the azimuth modulus can significantly expand the bandwidth of the OBG, and the OBG can be moved to the low-frequency direction by increasing the plasma frequency. In addition, an interesting phenomenon can be found that when the number of azimuthal modes is equal to 2, the TM wave can produce an extra high reflection zone. It provides a theoretical support for designing the narrowband filters without introducing any physical defect layers in the structure.


Sign in / Sign up

Export Citation Format

Share Document